摘要:
A photoelectric conversion device comprising a semiconductor substrate of a first conduction type, and a photoelectric conversion element having an impurity region of the first conduction type and a plurality of impurity regions of a second conduction type opposite to the first conduction type. The plurality of second-conduction-type impurity regions include at least a first impurity region, a second impurity region provided between the first impurity region and a surface of the substrate, and a third impurity region provided between the second impurity region and the surface of the substrate. A concentration C1 corresponding to a peak of the impurity concentration in the first impurity region, a concentration C2 corresponding to a peak of the impurity concentration in the second impurity region and a concentration C3 corresponding to a peak of the impurity concentration in the third impurity region satisfy the following relationship: C2
摘要:
In a photoelectric conversion device comprising a photoelectric-conversion section and a peripheral circuit section where signals sent from the photoelectric-conversion section are processed, the both sections being provided on the same semiconductor substrate, a semiconductor compound layer of a high-melting point metal is provided on the source and drain and a gate electrode of an MOS transistor that forms the peripheral circuit section, and the top surface of a semiconductor diffusion layer that serves as a light-receiving part of the photoelectric conversion section is in contact with an insulating layer.
摘要:
A photoelectric conversion device comprising a semiconductor substrate of a first conduction type, and a photoelectric conversion element having an impurity region of the first conduction type and a plurality of impurity regions of a second conduction type opposite to the first conduction type. The plurality of second-conduction-type impurity regions include at least a first impurity region, a second impurity region provided between the first impurity region and a surface of the substrate, and a third impurity region provided between the second impurity region and the surface of the substrate. A concentration C1 corresponding to a peak of the impurity concentration in the first impurity region, a concentration C2 corresponding to a peak of the impurity concentration in the second impurity region and a concentration C3 corresponding to a peak of the impurity concentration in the third impurity region satisfy the following relationship: C2
摘要:
In a photoelectric conversion device comprising a photoelectric-conversion section and a peripheral circuit section where signals sent from the photoelectric-conversion section are processed, the both sections being provided on the same semiconductor substrate, a semiconductor compound layer of a high-melting point metal is provided on the source and drain and a gate electrode of an MOS transistor that forms the peripheral circuit section, and the top surface of a semiconductor diffusion layer that serves as a light-receiving part of the photoelectric conversion section is in contact with an insulating layer.
摘要:
A noise generated by a constitution of widening an incident aperture of light of a photoelectric conversion element is reduced. In a manufacturing method of a photoelectric conversion device, first electroconductor arranged in a first hole arranged in the first interlayer insulation layer electrically connects a first semiconductor region to a gate electrode of an amplifying MOS transistor not through wirings included in a wiring layer. Moreover, a second electroconductor electrically connects a second semiconductor region different from the first semiconductor region to a wiring. In a constitution of that second electroconductor, a third electroconductor arranged in a second hole arranged in the first interlayer insulation layer and a fourth electroconductor arranged in a third hole arranged in the second interlayer insulation layer are stacked and electrically connected to each other. And the step of forming the first electroconductor, and the step of forming the third electroconductor are performed simultaneously.
摘要:
The present invention, in a photoelectric conversion device in which a pixel including a photoelectric conversion device for converting a light into a signal charge and a peripheral circuit including a circuit for processing the signal charge outside a pixel region in which the pixel are disposed on the same substrate, comprising: a first semiconductor region of a first conductivity type for forming the photoelectric region, the first semiconductor region being formed in a second semiconductor region of a second conductivity type; and a third semiconductor region of the first conductivity type and a fourth semiconductor region of the second conductivity type for forming the peripheral circuit, the third and fourth semiconductor regions being formed in the second semiconductor region; wherein in that the impurity concentration of the first semiconductor region is higher than the impurity concentration of the third semiconductor region.
摘要:
In a photoelectric conversion device having a buried layer in a part of an anode and a cathode of a photodiode, such as a CCD having a sensor structure and a CMOS sensor, well of the same conduction type as the conduction type of the buried layer can be disposed in a peripheral circuit and the potential of each well is independently controlled. In a photoelectric conversion device which is constructed in such a manner that on the whole area of a substrate of a specific conduction type there are disposed a buried layer of a conduction type opposite to the conduction type of the substrate and an epitaxial layer of the same conduction type as the conduction type of the substrate and that well of a conduction type opposite to the conduction type of the substrate are present in a part of the epitaxial layer, buried layer for well isolation of the same conduction type as the conduction type of the substrate which have a higher concentration than the epitaxial layer is disposed between the lower part of the well and the buried layer.
摘要:
A pattern forming method comprises subjecting a surface of a semiconductor substrate to a surface treatment for imparting hydrogen atoms, irradiating a desired region of said surface with an energy ray, selectively forming a metal film on a non-irradiated region other than the desired region, and etching said semiconductor substrate using said metal film as a mask.
摘要:
Disclosed is a method of manufacturing semiconductor devices in which a desired pattern having an area size larger than the field size that can be obtained in one exposure process step of an exposure device is formed. The manufacturing method includes the steps of dividing the desired pattern into a plurality of portions, and conducting exposure on the dividing patterns in a joined fashion.
摘要:
An insulating film is formed on the surface of the base of a semiconductor, and a portion of the insulating film is removed to cause the surface to appear outside. The exposed surface is terminated with hydrogen, and then energy beams are applied to selectively remove the terminating hydrogen. Metal is selectively deposited on the portion terminated with left hydrogen atoms.