Nickel alloy for semiconductor packaging

    公开(公告)号:US11594504B2

    公开(公告)日:2023-02-28

    申请号:US17234429

    申请日:2021-04-19

    Abstract: A packaged semiconductor die includes a semiconductor die coupled to a die pad. The semiconductor die has a front side containing copper leads, a copper seed layer coupled to the copper leads, and a nickel alloy coating coupled to the copper seed layer. The nickel alloy includes tungsten and cerium (NiWCe). The packaged semiconductor die may also include wire bonds coupled between leads of a lead frame and the copper leads of the semiconductor die. In addition, the packaged semiconductor die may be encapsulated in molding compound. A method for fabricating a packaged semiconductor die. The method includes forming a copper seed layer over the copper leads of the semiconductor die. In addition, the method includes coating the copper seed layer with a nickel alloy. The method also includes singulating the semiconductor wafer to create individual semiconductor die and placing the semiconductor die onto a die pad of a lead frame.

    Quad Flat No-Lead Package with Wettable Flanges

    公开(公告)号:US20210210419A1

    公开(公告)日:2021-07-08

    申请号:US17210392

    申请日:2021-03-23

    Inventor: Nazila Dadvand

    Abstract: A device and method for fabrication thereof is provided which results in corrosion resistance of metal flanges (802) of a semiconductor package, such as a quad flat no-lead package (QFN). Using metal electroplating (such as electroplating of nickel (Ni) or nickel alloys on copper flanges of the QFN package), corrosion resistance for the flanges is provided using a process that allows an electric current to reach the entire backside of a substrate (102) to permit electroplating. In addition, the method may be used to directly connect a semiconductor die (202) to the metal substrate (102) of the package.

    Nickel alloy for semiconductor packaging

    公开(公告)号:US11011483B2

    公开(公告)日:2021-05-18

    申请号:US15901631

    申请日:2018-02-21

    Abstract: A packaged semiconductor die includes a semiconductor die coupled to a die pad. The semiconductor die has a front side containing copper leads, a copper seed layer coupled to the copper leads, and a nickel alloy coating coupled to the copper seed layer. The nickel alloy includes tungsten and cerium (NiWCe). The packaged semiconductor die may also include wire bonds coupled between leads of a lead frame and the copper leads of the semiconductor die. In addition, the packaged semiconductor die may be encapsulated in molding compound. A method for fabricating a packaged semiconductor die. The method includes forming a copper seed layer over the copper leads of the semiconductor die. In addition, the method includes coating the copper seed layer with a nickel alloy. The method also includes singulating the semiconductor wafer to create individual semiconductor die and placing the semiconductor die onto a die pad of a lead frame. In addition the method includes wire bonding the leads of a lead frame to the copper leads of the semiconductor die and then encapsulating the die in molding compound.

    CONTACT FABRICATION TO MITIGATE UNDERCUT

    公开(公告)号:US20210028060A1

    公开(公告)日:2021-01-28

    申请号:US17038947

    申请日:2020-09-30

    Abstract: Described examples provide microelectronic devices and fabrication methods, including fabricating a contact structure by forming a titanium or titanium tungsten barrier layer on a conductive feature, forming a tin seed layer on the barrier layer, forming a copper structure on the seed layer above the conductive feature of the wafer or die, heating the seed layer and the copper structure to form a bronze material between the barrier layer and the copper structure, removing the seed layer using an etching process that selectively removes an exposed portion of the seed layer, and removing an exposed portion of the barrier layer.

Patent Agency Ranking