Abstract:
A magnetoresistance effect element includes first and second magnetic layers having a perpendicular magnetization direction, and a first non-magnetic layer disposed adjacent to the first magnetic layer and on a side opposite to a side on which the second magnetic layer is disposed. An interfacial perpendicular magnetic anisotropy exists at an interface between the first magnetic layer and the first non-magnetic layer, and the anisotropy causes the first magnetic layer to have a magnetization direction perpendicular to the surface if the layers. The second magnetic layer has a saturation magnetization lower than that of the first magnetic layer, and an interfacial magnetic anisotropy energy density (Ki) at the interface between the first magnetic layer and the first non-magnetic layer is greater than that of an interface between the first non-magnetic layer and second magnetic layers if being disposed adjacent each other.
Abstract:
One end of a current path of a second field-effect transistor is connected to a gate of a first field-effect transistor. One end of a magnetic tunnel junction element is connected to one end of a current path of the first field-effect transistor. A first control terminal is connected to another end of the current path of the first field-effect transistor. A second control terminal is connected to another end of the magnetic tunnel junction element. A third control terminal is connected to another end of the current path of the second field-effect transistor.
Abstract:
A magnetoresistance effect element (100) includes a heavy metal layer (11) that includes a heavy metal and that is formed to extend in a first direction, a recording layer (12) that includes a ferromagnetic material and that is provided adjacent to the heavy metal layer (11), a barrier layer (13) that includes an insulating material and that is provided on the recording layer (12) with being adjacent to a surface of the recording layer (12) opposite to the heavy metal layer (11), and a reference layer (14) that includes a ferromagnetic material and that is provided adjacent to a surface of the barrier layer (13), the surface being opposite to the recording layer (12). The direction of the magnetization of the reference layer (14) has a component substantially fixed in the first direction, and the direction of the magnetization of the recording layer (12) has a component variable in the first direction. A current having a direction same as the first direction is introduced to the heavy metal layer (11) to thereby enable the magnetization of the recording layer (12) to be inverted.
Abstract:
One end of a current path of a second field-effect transistor is connected to a gate of a first field-effect transistor. One end of a magnetic tunnel junction element is connected to one end of a current path of the first field-effect transistor. A first control terminal is connected to another end of the current path of the first field-effect transistor. A second control terminal is connected to another end of the magnetic tunnel junction element. A third control terminal is connected to another end of the current path of the second field-effect transistor.
Abstract:
A memory cell (101) is connected to a word line (WL), a bit line (BL), and a power supply line (PL), and includes a flip-flop storing data based on a change in resistance value of a magnetic tunnel junction element, and, a power gating field-effect transistor including a drain that is one end of a current path connected to the power supply line, and which has another end connected to the flip-flop. The ON and OFF states of the power gating field-effect transistor are controlled based on a control signal applied to a control terminal of the power gating field-effect transistor.
Abstract:
Provided is a semiconductor integrated circuit that uses a novel vertical MOS transistor that is free of interference between cells, that enables the short-channel effect to be minimized, that does not have hot electron injection, and that does not require the formation of shallow junction. Also provided is a method of producing the semiconductor integrated circuit. A memory cell 1 in the semiconductor integrated circuit is provided with: a semiconductor pillar 2 that serves as a channel; a floating gate 5 that circumferentially covers the semiconductor pillar 2 via a tunnel insulation layer 6 on the outer circumference of the semiconductor pillar 2; and a control gate 4 that circumferentially covers the semiconductor pillar via an insulating layer 8 on the outer circumference of the semiconductor pillar 2, and that circumferentially covers the floating gate 5 via an insulating layer 7 on the outer circumference of the floating gate.
Abstract:
Provided is a semiconductor integrated circuit that uses a novel vertical MOS transistor that is free of interference between cells, that enables the short-channel effect to be minimized, that does not have hot electron injection, and that does not require the formation of shallow junction. Also provided is a method of producing the semiconductor integrated circuit. A memory cell 1 in the semiconductor integrated circuit is provided with: a semiconductor pillar 2 that serves as a channel; a floating gate 5 that circumferentially covers the semiconductor pillar 2 via a tunnel insulation layer 6 on the outer circumference of the semiconductor pillar 2; and a control gate 4 that circumferentially covers the semiconductor pillar via an insulating layer 8 on the outer circumference of the semiconductor pillar 2, and that circumferentially covers the floating gate 5 via an insulating layer 7 on the outer circumference of the floating gate.
Abstract:
A magnetic multilayer film for a magnetic memory element includes an amorphous heavy metal layer having a multilayer structure in which a plurality of first layers containing Hf alternate repeatedly with a plurality of second layers containing a heavy metal excluding Hf; and a recording layer that includes a ferromagnetic layer and that is adjacent to the heavy metal layer, the ferromagnetic layer having a variable magnetization direction.
Abstract:
The present invention provides an access controller, and a data transfer method. The access controller controls accesses to the MRAM by reading data in advance and backing up the data when data is to be read from the MRAM.
Abstract:
Provided are a magnetic tunnel junction dement suppressing diffusion and penetration of constituent elements between a hard mask film, and a magnetic tunnel junction film and a protection layer, and a method for manufacturing the magnetic tunnel junction element. The magnetic tunnel junction element has a configuration in which a non-magnetic insertion layer (7) including Ta or the like is inserted beneath a hard mask layer (8).