摘要:
A semiconductor package with a heat sink and a method for fabricating the same are proposed. The heat sink is provided with a rigid and thermally resistant detach member on a top surface thereof, and is attached via its bottom surface to a chip mounted on a chip carrier. The detach member is sized larger than the heat sink and can be easily removed from the top surface of the heat sink. Subsequently, a molding process is performed to form an encapsulant for completely encapsulating the chip, the heat sink and the detach member. Then, a singulation process is performed to cut along predetermined cutting lines located between sides of the heat sink and corresponding sides of the detach member. Finally, the detach member and a portion of the encapsulant formed on the detach member are removed from the heat sink. The above fabrication method reduces the packaging cost.
摘要:
A heat sink package structure and a method for fabricating the same are disclosed. The method includes mounting and electrically connecting a semiconductor chip to a chip carrier, forming an interface layer or a second heat dissipating element having the interface layer on the semiconductor chip and installing a first heat dissipating element having a heat dissipating portion and a supporting portion onto the chip carrier. The method further includes forming openings corresponding to the semiconductor chip in the heat dissipating portion, and forming an encapsulant for covering the semiconductor chip, the interface layer or the second heat dissipating element, and the first heat dissipating element. A height is reserved on top of the interface layer for the formation of the encapsulant for covering the interface layer. The method further includes cutting the encapsulant along edges of the interface layer, and removing the redundant encapsulant on the interface layer. Therefore, the drawbacks of the prior art of the burrs caused by a cutting tool for cutting the heat dissipating element and wearing of the cutting tool are overcome.
摘要:
A semiconductor package, a chip carrier structure thereof, and a method for fabricating the chip carrier structure are provided. A substrate having a mounting region and a covering region is disposed in an opening of a carrier. A molding process is performed to form an encapsulant on the covering region of the substrate, with the mounting region of the substrate being exposed from the encapsulant. A cutting process is performed along edges of the substrate, such that the chip carrier structure is fabricated. A semiconductor chip is mounted on the mounting region of the substrate in a flip-chip manner, such that the semiconductor package is completed. The encapsulant formed on the covering region of the substrate provides the substrate with supporting strength and prevents poor electrical contact for the semiconductor package caused by substrate warpage.
摘要:
A semiconductor package with a heat sink and a method for fabricating the same are proposed. The heat sink is provided with a rigid and thermally resistant detach member on a top surface thereof, and is attached via its bottom surface to a chip mounted on a chip carrier. The detach member is sized larger than the heat sink and can be easily removed from the top surface of the heat sink. Subsequently, a molding process is performed to form an encapsulant for completely encapsulating the chip, the heat sink and the detach member. Then, a singulation process is performed to cut along predetermined cutting lines located between sides of the heat sink and corresponding sides of the detach member. Finally, the detach member and a portion of the encapsulant formed on the detach member are removed from the heat sink. The above fabrication method reduces the packaging cost.
摘要:
A method for fabricating semiconductor packages is proposed. A plurality of substrates are prepared each having a chip thereon. Length and width of each substrate are equal to predetermined length and width of the semiconductor package. A carrier having a plurality of openings is prepared. A protruded portion is formed at each corner of each opening, wherein a distance between two diagonal protruded portions is slightly larger than that between two diagonal corners of the substrate. The substrates are fixed in the openings of the carrier by means of the protruded portions, and gaps between the substrates and the carrier are sealed. An encapsulant is formed over each opening to encapsulate the corresponding chip by a molding process. An area on the carrier covered by the encapsulant is larger in length and width than the opening. A plurality of the semiconductor packages are formed after performing mold-releasing and singulation processes.
摘要:
A method for positioning a semiconductor component is disclosed. The method includes providing the semiconductor component and a carrier, the carrier having a plurality of openings, a protruded portion being provided at each corner position of each of the openings and extended toward a center of the opening, a distance between two diagonal protruded portions of the opening being slightly larger than that between two diagonal corners of the semiconductor component; and positioning the semiconductor component in the openings of the carrier via the protruded portions provided at each corner position of each of the openings.
摘要:
A semiconductor package with a heat sink and a method for fabricating the same are proposed. The heat sink is provided with a rigid and thermally resistant detach member on a top surface thereof, and is attached via its bottom surface to a chip mounted on a chip carrier. The detach member is sized larger than the heat sink and can be easily removed from the top surface of the heat sink. Subsequently, a molding process is performed to form an encapsulant for completely encapsulating the chip, the heat sink and the detach member. Then, a singulation process is performed to cut along predetermined cutting lines located between sides of the heat sink and corresponding sides of the detach member. Finally, the detach member and a portion of the encapsulant formed on the detach member are removed from the heat sink. The above fabrication method reduces the packaging cost.
摘要:
A thermally enhanced semiconductor package with EMI (electric and magnetic interference) shielding is provided in which a chip is mounted on and electrically connected to a surface of a substrate, and a thermally conductive member is stacked on the chip and electrically coupled to the surface of the substrate by bonding wires. An encapsulant is formed and encapsulates the chip, thermally conductive member, and bonding wires. A plurality of solder balls are implanted on an opposite surface of the substrate. The thermally conductive member is grounded via the bonding wires, substrate, and solder balls, and provides an EMI shielding effect for the chip to protect the chip against external electric and magnetic interference. The thermally conductive member has a coefficient of thermal expansion similar to that of the chip, and reduces thermal stress exerted on the chip and enhances mechanical strength of the chip to thereby prevent chip cracks.
摘要:
A semiconductor package and its fabricating method are proposed, in which a plurality of passive devices are integrated under a semiconductor chip, so as to increase the layout number of the passive devices in the semiconductor package and enhance the flexibility of substrate routability, as well as reduce an occupied area of a substrate for miniaturize the semiconductor package in profile. Moreover, as the integrated passive devices are further encapsulated by using an insulative material prior to a molding process, the dislocation of the passive devices caused by a high temperature and mold flow of a molding resin can be prevented from occurrence during molding. Furthermore, the encapsulated passive devices are prevented from contacting bonding wires, allowing the occurrence of short circuit to be avoided and quality of the packaged product to be assured.