Abstract:
A control apparatus for an internal combustion engine for controlling the engine while compensating for a deviation of an intake air amount from the proper value, caused by the thermal expansion and contraction of a variable intake mechanism thereof, which makes it possible to improve the control accuracy, make the engine compact in size, increase the degree of freedom of design, and reduce manufacturing costs. An ECU of an control apparatus of the engine calculates an FF correction value based on a thermodynamic model of a variable valve lift mechanism, calculates an FB correction value according to an air-fuel ratio correction coefficient and an actual air-fuel ratio, calculates a lift correction value as the difference between the FF correction value and the FB correction value or as a value of the FF correction value, corrects the valve lift by the lift correction value to thereby calculate a corrected valve lift, and carries out air-fuel ratio control and ignition timing control according to the corrected valve lift.
Abstract:
An in-cylinder pressure sensor for outputting a signal corresponding to an internal cylinder pressure of an engine is provided. A first signal and a second signal are extracted from the output signal of the in-cylinder pressure sensor. The first signal has a frequency band corresponding to knocking of the engine. The second signal has a frequency band used for detecting a peak of the internal cylinder pressure. A knocking detection period is set based on the second signal. The first signal in the knocking detection period is examined to determine whether or not knocking has occurred.
Abstract:
A control apparatus and method, and an engine control unit for an internal combustion engine are provided for restraining a torque step and sudden fluctuations in rotation when an air/fuel mixture combustion mode is switched among a plurality of combustion modes, and for improving the fuel economy. A control apparatus of an internal combustion engine operated with a combustion mode switched between a stratified combustion mode and a uniform combustion mode comprises an ECU. The ECU calculates an ignition manipulated variable to cancel out a change in the engine rotational speed associated with the switching of the combustion mode when a first-time injection ratio changes during idle rotational speed control, and calculates an intake manipulated variable to cancel a change in the engine rotational speed caused by the ignition manipulated variable when the first-time injection ratio changes.
Abstract:
Misfire of an engine is detected by extracting a pressure component of combustion from an output of a pressure sensor disposed in a cylinder. An engine misfire detection apparatus obtains a combustion parameter Cr that is a correlation between a reference signal Fc synchronous with the combustion cycle of the engine and cylinder pressure Pc obtained from an output of a pressure sensor disposed in the cylinder. The apparatus detects a misfire of the engine based on the combustion parameter. A misfire can be accurately detected even under a low load condition because the combustion parameter indicating the combustion component is extracted from the cylinder pressure as a correlation between the reference signal synchronous with the combustion cycle of the engine and the cylinder pressure obtained from the sensor output.
Abstract:
A drive system includes an output shaft of an engine connected to a sun gear of a planetary gear assembly. An electric motor is connected, via gears, to a carrier rotatably supporting a planetary pinion gear that rotates around the outer circumference of the sun gear while rotating on its axis in engagement with the sun gear. An input shaft of a STEPTRONIC™ transmission is connected to a ring gear that rotates in engagement with the planetary pinion gear. The drive system further includes an engine clutch directly coupling the output shaft of the engine to the ring gear, a ring gear brake that regulates the rotation of the ring gear, and a torque converter clutch and a torque converter for transmitting the driving force of the electric motor to an output shaft of the STEPTRONIC™ transmission.
Abstract:
A controller for a transmission capable of preventing an occurrence of a gear squeak caused by a malfunction of a synchronization mechanism. The voltage determination section 24 performs a shift operation of a transmission by determining a control input Vin to a shift motor 13 so as to match an actual position Psc of a coupling sleeve 6 grasped by an actual position grasping section 21 with a target position Psc_cmd of the coupling sleeve 6 set by a target position setting section 22. After starting the shift operation of the transmission, it halts the shift operation by detecting a malfunction in the gear position where the shift operation is under execution when the actual position Psc of the coupling sleeve 6 has reached a malfunction judgment position provided within a range from a balk point to a contact point between the coupling sleeve 6 and an idle gear 7c before a difference Esc between the actual position Psc and the target position Psc_cmd of the coupling sleeve 6 exceeds a given contact judgment value.
Abstract:
An exhaust gas purifying apparatus and method for an internal combustion engine, and an engine control unit are provided for appropriately determining the amount of reducing agent supplied to a NOx selective reduction catalyst to ensure good exhaust gas characteristics. The exhaust gas purifying apparatus comprises an ECU; a NOx selective reduction catalyst for purifying NOx in exhaust gases in an exhaust pipe; a NOx sensor disposed in the exhaust pipe at a location downstream of the NOx selective reduction catalyst for detecting a NOx concentration in exhaust gases; and an injector for supplying the NOx selective reduction catalyst with ammonia produced in an ammonia production unit. The ECU determines the amount of ammonia injected to the NOx selective reduction catalyst by the injector such that an estimate of the NOx concentration detected by the NOx sensor reaches a minimum value.
Abstract translation:提供一种用于内燃机的排气净化装置和方法以及发动机控制单元,用于适当地确定供给至NOx选择还原催化剂的还原剂的量以确保良好的废气特性。 废气净化装置包括ECU; 用于净化排气管中废气中的NOx的NOx选择还原催化剂; NO x传感器,其设置在所述NOx选择还原催化剂的下游位置处的排气管中,用于检测废气中的NOx浓度; 以及用于向所述NOx选择还原催化剂供应在氨生产单元中产生的氨的喷射器。 ECU通过喷射器确定喷射到NOx选择还原催化剂的氨的量,使得由NOx传感器检测到的NOx浓度的估计达到最小值。
Abstract:
A target value Vtgt for an output Vout of an O2 sensor 8 (an exhaust gas sensor) disposed downstream of a catalytic converter 4 is set variably depending on a temperature TO2 of an active element 10 of the O2 sensor 8 by a target value setting unit 18, and the air-fuel ratio of an exhaust gas is controlled by an air-fuel ratio control unit 17 to converge the output Vout to the target value Vtgt. An exhaust gas temperature Tgd is estimated by an exhaust temperature observer 19, and the temperature TO2 of the active element 10 is sequentially estimated by an element temperature observer 20 using the estimated value of the exhaust gas temperature Tgd. A heater 13 of the O2 sensor 8 is controlled by a heater controller 22 to keep the temperature TO2 of the active element 10 at a predetermined target value R. The air-fuel ratio is thus controlled to maintain a desired exhaust gas purifying capability of the catalytic converter irrespective of the temperature of the active element of the exhaust gas sensor.
Abstract:
A method of calculating the amount of work done by an internal combustion engine, which is capable of calculating a work amount parameter indicative of the amount of work done with accuracy while compensating for a phase delay in in-cylinder pressure data caused e.g. by a filtering process performed thereon. The method calculates the work amount parameter Pmi indicative of the amount of work done by the engine 3 including a combustion chamber 3b, as follows: Pressure in the combustion chamber 3b is detected to obtain in-cylinder pressure data P indicative of the detected pressure. Volume data V indicative of a state of change in volume of the combustion chamber 3b is obtained. The obtained volume data V is subjected to a first predetermined filtering process. The work amount parameter Pmi is calculated based on the detected in-cylinder pressure data P, and the volume data filtered value VF obtained by subjecting the volume data V to the first filtering process.
Abstract:
A cam phase control system for an internal combustion engine, which is capable of suppressing deviation of the cam phase which is caused by a sudden change in the engine speed due to the structure of a variable cam phase mechanism, thereby securing excellent controllability and high control accuracy. The coma phase control system of the engine comprise an ECU and an electromagnetic variable cam phase mechanism. The ECU calculates an SLD control input for causing the cam phase to converge to a target cam phase by equations (1) to (6), calculates a gain-adjusted value by modulating the SLD control input by equations (20) to (25), calculates a correction value according to the engine speed NE, and calculates a control input for controlling the variable cam phase mechanism by correcting the gain-adjusted value by the correction value.