Abstract:
A fluoropolymer coating composition contains a homogeneous mixture of crystalline submicron fluoropolymer particles dispersed in a solvent-borne solution of less crystalline or amorphous fluororesin. The composition may be prepared by blending a latex containing crystalline submicron fluoropolymer particles with a latex containing less crystalline or amorphous fluororesin particles, coagulating and drying the blended latices, and dissolving the dried blend in a solvent for the fluororesin particles. Quasi-homogenous compositions may be prepared by blending dry crystalline submicron fluoropolymer particles with a) dry less crystalline or amorphous fluororesin particles and a solvent for the fluororesin particles, or b) a solvent-borne solution of less crystalline or amorphous fluororesin. Rubbing the disclosed coatings can provide a thin, continuous or nearly continuous fluoropolymer surface layer atop a less crystalline or amorphous fluororesin binder containing crystalline submicron fluoropolymer particles.
Abstract:
The invention provides an article comprising a first layer comprising a first substantially solid partially-fluorinated thermoplastic polymer, and a second layer comprising a second substantially solid partially-fluorinated thermoplastic polymer, the second layer bonded to the first layer, wherein the first polymer and the second polymer have different compositions. The invention also provides layered articles and processes for preparing layered articles.
Abstract:
A medical device, particularly an orthodontic element, that includes a surface having a polymeric film disposed thereon (e.g., a liner disposed in an archwire slot of an orthodontic bracket), wherein the film comprises a fluorinated polymer and a treated surface having an adhesive thereon.
Abstract:
Polymer bonding compositions having greater than about 1 milliequivalent primary amine/100 grams of the polymer, more preferably greater than about 3 milliequivalent non-tertiary amine/100 grams of the polymer. Preferably the polymer is not significantly crosslinked. These bonding compositions may be especially useful for bonding fluropolymers. Processes for making the novel polymers and the resulting multilayer bonded articles are described. The polymers include polymer-bonded ZNHLSi(OP)a(X)3-a-b(Y)b units. The bonding composition may be used for making multi-layer polymer laminates such as tubes and films and containers.
Abstract:
Method of forming a very hydrophobic, extremely hydrophobic or superhydrophobic surface comprising depositing a composition comprising hydrophobic microparticles, hydrophobic nanoparticles, or a mixture thereof and a binder in sufficient quantity to provide a hydrophobic or a superhydrophobic surface on a substrate having a micropatterned surface having raised portions, recessed portions or a combination thereof.
Abstract:
A method is provided for obtaining crosslinked polymers having pendent sulfonic acid groups by crosslinking through the sulfonic acid groups or their precursors with aromatic crosslinkers or aromatic pendent crosslinking groups to form aromatic sulfones. Such crosslinked polymers may be used to make polymer electrolyte membranes (PEM's) that may be used in electrolytic cells such as fuel cells.
Abstract:
The present invention provides immunomodulatory compositions include an immune response modifier moiety coupled to a targeting moiety. In another aspect, the invention provides methods of providing targeted delivery of an IRM, generating a localized immune response, and treating a condition in a subject. Generally, the methods include administering to the subject an immunomodulatory composition that includes an immune response modifier moiety coupled to a targeting moiety that recognizes a delivery target.
Abstract:
Protective fluoropolymer layers for dental articles, particularly orthodontic appliances, that include an elastomeric substrate, are provided that reduce adhesion of materials such as food stains, bacteria and proteinaceous substances to these surfaces, which can cause staining. Methods of reducing adhesion of these materials to such surfaces are also provided.
Abstract:
A method for making a fine electrically conductive grid embedded in a polymer substrate. The method includes the steps of providing a polymer substrate, forming a pattern of grooves in the substrate, filling the grooves with electrically conductive powder, and then applying heat and/or pressure to the substrate. The application of heat and/or pressure to the substrate causes the grooves to collapse inward against the conductive powder. Collapsing the grooves compacts the conductive powder within the groove, thereby establishing a continuously conductive grid line or circuit. The narrow grid lines that result allow more light to transmit through the substrate. The method allows grid lines to be made with higher aspect ratios (ratio of line depth to line width) than is possible by previous methods.
Abstract:
Fluoropolymeric substrates are modified by a photochemical process that includes at least one species having the formula wherein: R represents hydrogen or an alkyl or cycloalkyl group having from 1 to 18 carbon atoms or an aryl, alkaryl, or aralkyl group having from 6 to 18 carbon atoms; X represents O or NH; and each of R1, R2, R3, and R4 independently represents H, an alkyl group having from 1 to 18 carbon atoms, an alkenyl group having from 1 to 18 carbon atoms, an aryl group having from 6 to 10 carbon atoms, or any two of R, R1, R2, R3, and R4 taken together represent an alkylene group having from 2 to 6 carbon atoms, with the proviso that at least one of R1 and R2 or at least one of R3 and R4 is not H.