Abstract:
A blood aspirator is composed of a suction circuit adapted to receive a flow of blood, a sensor associated with the suction circuit for generating a signal relating to the presence of bubbles in aspirated blood in the suction circuit, a variable speed pump coupled to the suction circuit and adapted to pump blood through the suction circuit, and a controller for controlling the speed of the pump. The controller causes the pump to adjust the blood flow through the suction circuit so that a predetermined, nonzero concentration of bubbles flows through the suction circuit.
Abstract:
The measurement of blood flow in a dialysis shunt is obtained by injection of an indicator material into a venous line leading from dialysis equipment to the shunt. The blood flow in an arterial line leading from the shunt at a location downstream of the venous line to the dialysis equipment is monitored by an arterial line sensor for the presence of the indicator material. A detector connected to the sensor provides a dilution curve in response to the presence of the indicator material and the blood flow in the shunt is calculated from the area under the dilution curve. The locations of the arterial and venous lines in the shunt can be reversed to obtain a measurement of blood recirculation from the venous line into the arterial line.
Abstract:
In a separation device for separation of blood into its components, the hematocrit value of the blood to be separated plays a significant role relative to the sedimentation of cellular blood components. Since in blood processing, particularly in the intraoperative area, significant fluctuations of the incoming hematocrit value may occur, for example, due to infused volume expander, irrigation solutions, anticoagulant additives, etc., it is useful for maintenance of a blood separation working with constant values, particularly a constant hematocrit value of the erythrocyte fraction, to take the preset hematocrit value of the blood to be separated into account. According to the invention, the rate of blood flow through the separation device is automatically adjusted as a function of the hematocrit value of the incoming blood.
Abstract:
There is described a method and apparatus for the determination of hematocrit levels in which both the conductivity of whole blood and the conductivity of blood plasma are determined together. While a conductivity cell (18) is being used for the determination of the conductivity of whole blood, the conductivity of plasma is calculated in a computer (30) with the aid of ion selective electrodes (14, 16) from the sodium or potassium concentrations.
Abstract:
A cardioplegic controlling and regulating device for the dosed perfusion of cardioplegic perfusion solution in open-heart surgery has a storage container for receiving the cardioplegic solution, which container is part of a scale and can be connected to the heart over a tubular conduit. A pressure-controlled dosing pump which acts on the tubular conduit and cooperates with a second, reversible pump which is constructed as an exhaust pump and is selectively operable synchronously or asynchronously within controllable tolerance limits with the first dosing pump during the perfusion and sustaining of the perfusion. An ultrafilter for the mixture of blood and cardioplegic solution removed from the patient's heart is located in a removal line. An outlet for the blood separated form the ultrafilter is connected by a conduit to a blood storage container and the permeate or filtrate outlet of which ends in a filtrate line or in a filtrate collector vessel. The ultrafilter is located in a by-pass line to a blood storage container so that the patient's blood mixed with cardioplegic solution can be prepared to a hemoconcentrate after the perfusion has been completed. In the same manner, other blood removed by suction from the patient during the operation can be prepared by this by-pass line and the ultrafilter. Another pressure-controlled dosing pump sustains the first dosing pump and is connected to it in parallel.
Abstract:
A blood purification apparatus includes an extracorporeal circulation system, a blood purifier provided in the system for purifying blood by dialysis or filtration through a semipermeable membrane, a circulation blood volume measuring instrument for measuring changes in a circulating blood volume within a patient's body, a control section comprising a memory for storing a program for a pattern of changes in the circulating blood volume during blood purification, the program being matched to the condition of a patient, and a regulator connected to the extracorporeal circulation system and the control section, for controlling the circulating blood volume, the regulator being controlled by the control section on the basis of the circulating blood volume measured during blood purification and the programmed amount. In this apparatus, optimum blood purification is carried out while maintaining the circulating blood volume at a prescribed level.
Abstract:
An apparatus for extracorporeal treatment of blood comprising a treatment unit, a blood withdrawal line, a blood return line, a preparation line and a spent dialysate line; a non-invasive blood volume sensor for determining an additional property of blood is active on a tube segment of the blood withdrawal line or of the blood return line; the sensor includes one source for directing a signal towards the blood, a plurality of detectors for receiving the signal, and a controller receiving the output signals from the detectors and determining a blood volume variation and a value of sodium concentration in the blood (NaPl) both based on the output signals. A process of determining at least one parameter and on property of blood circulating an extracorporeal blood circuit is also disclosed.
Abstract:
Method and device according to the method for determining intracellular and/or extracellular, in particular macromolecular fractions of fluids, preferably of body fluids of living organisms, with the steps: coupling-in a measurement signal through an electrically non-conductive wall into the fluid to be measured; coupling-out an electrical measurement value that is thereby generated in the fluid to be measured; detecting the coupled-out electrical measurement value at a plurality of different frequencies of the electrical measurement signal; determining the intracellular and/or extracellular, in particular macromolecular fractions of the fluid to be measured by means of evaluation of the detected electrical measurement value at a plurality of frequencies of the measurement signal.
Abstract:
This invention relates generally to magnetic sensors and related systems and methods. In some aspects of the invention, a magnetic sensor assembly includes a housing configured to releasably hold a medical fluid tube and a sensor secured to the housing, the sensor configured to detect a change in a strength of a magnetic field when a medical fluid passes through the medical fluid tube.
Abstract:
Disposable, pre-sterilized, and pre-calibrated, pre-validated conductivity sensors are provided. These sensors are designed to store sensor-specific information, such as calibration and production information, in a non-volatile memory chip on the sensor on in a barcode printed on the sensor. The sensors are calibrated using 0.100 molar potassium chloride (KCl) solutions at 25 degrees Celsius. These sensors may be utilize with in-line systems, closed fluid circuits, bioprocessing systems, or systems which require an aseptic environment while avoiding or reducing cleaning procedures and quality assurance variances.