Abstract:
Systems and methods for processing sample processing devices. The system can include a base plate adapted to rotate about a rotation axis. The base plate can include at least one first magnetic element. The system can further include an annular cover, and a sample processing device comprising at least one thermal process chamber. The annular cover can include an inner edge, an outer edge, and at least one second magnetic element. The method can include positioning the sample processing device between the base plate and the annular cover, such that the inner edge of the annular cover is positioned inwardly of the at least one thermal process chamber, and such that the at least one first magnetic element attracts the at least one second magnetic element to force the annular cover in a first direction along the z-axis, urging the sample processing device into contact with the base plate.
Abstract:
The present invention provides methods and kits for isolating nucleic acid from a sample, preferably from a biological sample, using a microfluidic device and a concentration step.
Abstract:
Techniques are described for the detection of multiple target species in real-time PCR (polymerase chain reaction). For example, a system comprises a data acquisition device and a detection device coupled to the data acquisition device. The detection device includes a rotating disk having a plurality of process chambers having a plurality of species that emit fluorescent light at different wavelengths. The device further includes a plurality of removable optical modules that are optically configured to excite the species and capture fluorescent light emitted by the species at different wavelengths. A fiber optic bundle coupled to the plurality of removable optical modules conveys the fluorescent light from the optical modules to a single detector. In addition, the device may control the flow of fluid in the disk by locating and selectively opening valves separating chambers by heating the valves with a laser.
Abstract:
Sample processing devices with variable valve structures and methods of using the same are disclosed. The valve structures allow for removal of selected portions of the sample material located within the process chamber. Removal of the selected portions is achieved by forming an opening in a valve septum at a desired location. The valve septums may be large enough to allow for adjustment of the location of the opening based on the characteristics of the sample material in the process chamber. If the sample processing device is rotated after the opening is formed, the selected portion of the material located closer to the axis of rotation exits the process chamber through the opening. The remainder of the sample material cannot exit through the opening because it is located farther from the axis of rotation than the opening.
Abstract:
Methods of providing at least one reagent for use in a device for processing sample material, delivering at least one reagent to a device for processing sample material, and adding at least one reagent to at least one of the steps in a process for detecting or assaying a nucleic acid; a support film coated with a dry reagent layer; and a device for processing sample material having a support film coated with a dry reagent layer contained within at least one chamber of the device are disclosed.
Abstract:
Methods and devices for thermal processing of multiple samples at the same time are disclosed. The assemblies include carriers and sample processing devices with process arrays that include conduits useful in distributing sample materials to a group pf process chambers located in fluid communication with the main conduits. The sample processing devices may include one or more of the following features in various combinations: deformable seals, process chambers connected to the main conduit by feeder conduits exiting the main conduit at offset locations, U-shaped loading chambers, and a combination of melt bonded and adhesively bonded areas. The carriers may be used to apply selective compression to the sample processing devices.
Abstract:
Techniques are described for the detection of multiple target species in real-time PCR (polymerase chain reaction). For example, a system comprises a data acquisition device and a detection device coupled to the data acquisition device. The detection device includes a rotating disk having a plurality of process chambers having a plurality of species that emit fluorescent light at different wavelengths. The device further includes a plurality of removable optical modules that are optically configured to excite the species and capture fluorescent light emitted by the species at different wavelengths. A fiber optic bundle coupled to the plurality of removable optical modules conveys the fluorescent light from the optical modules to a single detector. In addition, the device may control the flow of fluid in the disk by locating and selectively opening valves separating chambers by heating the valves with a laser.
Abstract:
Devices, systems, and methods for processing sample materials. The sample materials may be located in a plurality of process chambers in the device, which is rotated during heating of the sample materials.
Abstract:
Methods and devices for removing small negatively charged molecules from a biological sample mixture that uses an anion exchange material that has associated therewith a polyoxyalkylene.