摘要:
This invention provides complex oxide particles as carriers that are capable of imparting high heat tolerance and oxygen storage capacity to a catalyst and an exhaust gas purifying catalyst for automobiles using the same. The complex oxide particles comprise ceria-zirconia complex oxide, alumina, yttria, and at least one oxide of an element selected from among rare earth elements other than cerium and yttrium and alkaline earth metals, in which alumina content is 70% to 89% by mass relative to the complex oxide particles and yttria content is 0.01% to 0.22% by mole relative to the ceria-zirconia complex oxide.
摘要:
The present disclosure relates to a substrate containing passive NOx adsorption (PNA) materials for treatment of gases, and washcoats for use in preparing such a substrate. Also provided are methods of preparation of the PNA materials, as well as methods of preparation of the substrate containing the PNA materials. More specifically, the present disclosure relates to a coated substrate containing PNA materials for PNA systems, useful in the treatment of exhaust gases. Also disclosed are exhaust treatment systems, and vehicles, such as diesel or gasoline vehicles, particularly light-duty diesel or gasoline vehicles, using catalytic converters and exhaust treatment systems using the coated substrates.
摘要:
The present disclosure describes ZPGM material compositions including LaMnO3 perovskite structure mixed with a plurality of support oxide powders to develop suitable ZPGM catalyst materials. Bulk powder ZPGM catalyst compositions are produced by physically mixing bulk powder LaMnO3 perovskite with different support oxide powders calcined at about 1000° C. XRD analyses are performed for bulk powder ZPGM catalyst compositions to determine La—Mn perovskite phase formation and phase stability for a plurality of temperatures to about 1000° C. ZPGM catalyst material compositions including La—Mn perovskite structure mixed with doped zirconia, La2O3, cordierite, and ceria-zirconia support oxides present phase stability, which can be employed in ZPGM catalysts for a plurality of DOC applications, thereby leading to a more effective utilization of ZPGM catalyst materials with high thermal and chemical stability in DOC products.
摘要:
A diesel oxidation catalyst for the treatment of exhaust gas emissions, such as the oxidation of unburned hydrocarbons (HC), and carbon monoxide (CO) and the reduction of nitrogen oxides (NOx) is described. More particularly, the present invention is directed to a washcoat composition comprising high silica to alumina zeolite and platinum and palladium such that the zeolite minimizes negative interactions of these platinum group metals with the zeolite.
摘要:
An adsorbent for carbon dioxide may include a composite metal oxide including a divalent first metal (M1), a trivalent second metal (M2), and at least one polyoxometalate (POM) ion selected from an anion represented by a first formula (e.g., Chemical Formula 1) and an anion represented by a second formula (e.g., Chemical Formula 2). A capture module for carbon dioxide may include the adsorbent.
摘要:
Stabilized palladium (+1) compounds to mimic rhodium's electronic configuration and catalytic properties are disclosed. Palladium (+1) compounds may be stabilized in perovskite or delafossite structures and may be employed in Three-Way Catalysts (TWC) for at least the conversion of HC, CO and NOx, in exhaust gases. The TWC may include a substrate, a wash-coat and, a first impregnation layer, a second impregnation layer and an over-coat. The second impregnation layer and the over-coat may include palladium (+1) based compounds as catalyst.
摘要:
Oxidation ZPGM catalyst systems and three way ZPGM catalyst systems are disclosed. ZPGM catalyst systems may oxidize toxic gases, such as carbon monoxide and hydrocarbons, optionally some ZPGM catalyst systems may as well reduce nitrogen oxides that may be included in exhaust gases. ZPGM catalyst systems may include: a substrate, a washcoat, and an overcoat. The washcoat may include at least one ZPGM catalyst and carrier material oxides. Similarly, overcoat may include at least one ZPGM catalyst, carrier material oxides and OSMs. Suitable known in the art chemical techniques, deposition methods and treatment systems may be employed in order to form the disclosed ZPGM catalyst systems.
摘要:
Compositions and methods for the preparation of ZPGM TWC systems are disclosed. ZPGM TWC systems may be employed within catalytic converters to oxidize toxic gases, such as carbon monoxide and other hydrocarbons, as well as to reduce nitrogen oxides. ZPGM TWC systems are completely free of PGM catalyst and may include: a substrate, a washcoat, and an overcoat. Washcoat may include manganese as ZPGM catalyst, and carrier material oxides. Similarly, overcoat may include at least one ZPGM catalyst, carrier material oxides and OSMs. Suitable known in the art chemical techniques, deposition methods and treatment systems may be employed in order to form the disclosed ZPGM TWC systems. ZPGM TWC systems may include high surface area, low conversion temperature catalysts that may exhibit high efficiency in the conversion of exhaust gases.
摘要:
Described are ZPGM catalyst systems which are free of any platinum group metals for reducing emissions of carbon monoxide, nitrogen oxides, and hydrocarbons in exhaust streams. ZPGM catalyst systems may include a substrate, a washcoat, and an overcoat. Both manganese and copper may be provided as catalysts, with copper in the overcoat and manganese preferably in the washcoat. The manganese can also be provided in the overcoat, but when in the overcoat should be stabilized for greatest effectiveness. A carrier material oxide may be included in both washcoat and overcoat. It has been discovered that the ZPGM catalyst systems are effective even without OSM in washcoat and the ZPGM catalysts within washcoat and overcoat may be best prepared by co-milling an aqueous slurry that includes manganese with alumina for the washcoat and copper and cerium salts with alumina and an OSM, for overcoat prior to overcoating and heat treating. Disclosed ZPGM TWC systems in catalytic converters may be employed to decrease the pollution caused by exhaust from various sources, such as automobiles, utility plants, processing and manufacturing plants, airplanes, trains, all-terrain vehicles, boats, mining equipment, and other engine-equipped machines.
摘要:
An exhaust system (10) for a lean-burn internal combustion engine (12) comprises a first substrate monolith (16) comprising a catalyst for oxidising nitric oxide (NO) comprising a catalytic oxidation component followed downstream by a second substrate monolith (18) which is a wall-flow filter having inlet channels and outlet channels, wherein the inlet channels comprise a NOx absorber catalyst (20) and the outlet channels comprise a catalyst for selective catalytic reduction (22) of nitrogen oxides with nitrogenous reductant.