摘要:
To provide a method for producing a glass particle deposit and a method for producing a glass preform, in which outer diameter variation of the glass particle deposit can be reduced to thereby improve quality. A flow rate of clean gas (CG) introduced into a container potion 10 is limited to thereby prevent the outermost layer of a glass particle deposit 20 from being locally cooled and reduce variation in bulk density in the longitudinal direction of the glass particle deposit 20, that is, outer diameter variation and breakage.
摘要:
To provide an apparatus for manufacturing a glass particles deposit in which it is possible to effectively prevent the foreign matter from being deposited on or mixed into the glass particles deposit during the manufacturing operation. The apparatus for manufacturing the glass particles deposit comprises an upper funnel, a reaction vessel and a lower funnel, wherein the glass particulates are deposited around the outer circumference of a starting rod supported by a support rod within the reaction vessel while the starting rod is being rotated around its axis and reciprocated up and down, characterized in that a sleeve made of quartz separating an inner wall of the reaction vessel and a central rotation member is installed inside the reaction vessel.
摘要:
An object of the present invention is to reduce the adhesion of floating glass particulates to the surface of a soot preform during the manufacture of the soot preform, thereby reducing the voids generated in the transparent glass preform made from the soot preform, and to improve the quality of the optical fiber manufactured from the transparent glass preform. The equipment of the invention is equipped with a reaction vessel 1, a burner 2 provided within the reaction vessel 1 into which raw material gas and combustion gas are supplied so as to generate glass particulates by hydrolysis reaction, and a starting rod 5 onto which the glass particulates generated by the burner 2 are deposited. By drawing up the starting rod 5 while turning it around its axis, the glass particulates are deposited on the tip of or around the starting rod 5 to form a soot preform 6 in column-like shape. The equipment is provided with a partition board 8 that separates part of the space around the soot preform 6 in the reaction vessel 1 into upper and lower parts. An exhaust port 4 is provided below the partition board 8 in the inner wall of the reaction vessel 1, and the burner 2 is installed in the space below the partition board 8.
摘要:
High purity direct deposit vitrified silicon oxyfluoride glass suitable for use as a photomask substrates for photolithography applications in the VUV wavelength region below 190 nm is disclosed. The inventive direct deposit vitrified silicon oxyfluoride glass is transmissive at wavelengths around 157 nm, making it particularly useful as a photomask substrate at the 157 nm wavelength region. The inventive photomask substrate is a dry direct deposit vitrified silicon oxyfluoride glass which exhibits very high transmittance in the vacuum ultraviolet (VUV) wavelength region while maintaining the excellent thermal and physical properties generally associated with high purity fused silica. In addition to containing fluorine and having little or no OH content, the inventive direct deposit vitrified silicon oxyfluoride glass suitable for use as a photomask substrate at 157 nm is also characterized by having less than 1null1017 molecules/cm3 of molecular hydrogen and low chlorine levels.
摘要:
High purity direct deposit vitrified silicon oxyfluoride glass suitable for use as a photomask substrates for photolithography applications in the VUV wavelength region below 190 nm is disclosed. The inventive direct deposit vitrified silicon oxyfluoride glass is transmissive at wavelengths around 157 nm, making it particularly useful as a photomask substrate at the 157 nm wavelength region. The inventive photomask substrate is a dry direct deposit vitrified silicon oxyfluoride glass which exhibits very high transmittance in the vacuum ultraviolet (VUV) wavelength region while maintaining the excellent thermal and physical properties generally associated with high purity fused silica. In addition to containing fluorine and having little or no OH content, the inventive direct deposit vitrified silicon oxyfluoride glass suitable for use as a photomask substrate at 157 nm is also characterized by having less than 1×1017 molecules/cm3 of molecular hydrogen and low chlorine levels.
摘要:
A method and apparatus for producing a glass base material for an optical fiber. A material for an optical fiber and a reaction gas are jetted from a burner connected to a material line and a gas line toward a surface of a quartz substrate, in order to deposit a soot-like reaction product on the substrate at a predetermined position to thereby produce a glass base material for an optical fiber. Dry air is introduced into a reaction container in an amount of 4 to 8 times the amount of water vapor that is generated due to flame hydrolysis during the reaction. Therefore, it is possible to reliably solve the problem that the interior of the reaction container is excessively dried, with the result that soot generated through a reaction adheres to and aggregates on the wall surface of the reaction container due to static electricity, and the problem that the amount of water vapor becomes excessive and is condensed on the wall surface, with the result that soot strongly adheres to the wall surface, while the observation window or the like becomes fogged. Further, soot peeled off the wall surface is prevented from adhering to or melting into the side surface or base portion of a pre-form being pulled, so that the quality of products is improved, and stable operation becomes possible.
摘要:
The object of the invention is to provide an apparatus for manufacturing a porous glass preform, which comprises a reaction vessel in which local stress concentration caused by expansion due to heat is prevented, and there is no fear of the occurrence of deformation or cracks. The apparatus of this invention manufactures the porous glass preform by depositing glass particles blown from a burner on the seed rod rotating around its axis, and this apparatus is characterized in that the reaction vessel is provided with a means for relieving concentration of stress due to thermal expansion of the reaction vessel.
摘要:
A glass soot deposit is produced at a high deposition rate by blowing a gaseous glass-forming raw material together with a fuel gas from a combustion burner in a closed muffle, hydrolyzing the glass-forming raw material in a flame to generate glass soot, and depositing the glass soot on a tip end or a peripheral surface of a starting member which is rotated to form a glass soot deposit, in which a lowest surface temperature of the muffle tube is maintained at 50.degree. C. or higher and an average surface temperature of the muffle is maintained in a range between 50.degree. C. and 150.degree. C., whereby corrosion of the muffle is prevented.
摘要:
An optical fiber base material manufacturing apparatus including a reaction chamber; a burner that has a portion thereof inserted into the reaction chamber through an insertion opening that creates a connection between the inside and outside of the reaction chamber, and emits a flame toward a starting member positioned within the reaction chamber; and a seal connection member that creates an air-tight seal between the burner and the reaction chamber at the insertion opening. One end of the seal connection member firmly contacts the burner inserted therethrough, another end of the seal connection member firmly contacts the reaction chamber and has a through-hole formed therein through which the burner is inserted without contacting the seal connection member, and the seal connection member includes a connecting portion that connects the one end to the other end, while preventing transfer of stress between the one end and the other end.
摘要:
High rate deposition methods comprise depositing a powder coating from a product flow. The product flow results from a chemical reaction within the flow. Some of the powder coatings consolidate under appropriate conditions into an optical coating. The substrate can have a first optical coating onto which the powder coating is placed. The resulting optical coating following consolidation can have a large index-of-refraction difference with the underlying first optical coating, high thickness and index-of-refraction uniformity across the substrate and high thickness and index-of-refraction uniformity between coatings formed on different substrates under equivalent conditions. In some embodiments, the deposition can result in a powder coating of at least about 100 nm in no more than about 30 minutes with a substrate having a surface area of at least about 25 square centimeters.