Abstract:
The present invention describes a process for the disposal of residual substances from waste incineration plants as well as activated coke and/or activated carbon. For this purpose the residual substance as well as activated coke and/or activated carbon is introduced into the annular shaft (3) of the primary chamber (2) of the furnace (1). In the primary chamber (2) a temperature of 1250.degree. C. to 1500.degree. C. is set. The molten material flowing off leaves the primary chamber (2) together with the flue gases through the central outlet (4). The molten material is passed through the secondary chamber (5) and is discharged as slag. The present invention furthermore describes an apparatus for such process, where in the furnace roof (10) of the primary chamber (2) of the furnace (1) one or several burners (7) are disposed and at one or several points (22) of the furnace roof (10) secondary air is introduced into the primary chamber (2) and at one or several points (23) of the furnace roof (10) tertiary air is introduced into the primary chamber (2).
Abstract:
A power plant includes a gas turbine unit having a compressor for compressing ambient air, a burner for burning fuel and heating air compressed by said compressor, and a turbine for expanding air heated by said burner to drive said compressor and produce hot exhaust gases. The plant further includes a combustor for containing particles of solid fuel which are fluidized by the exhaust gases from the turbine to produce hot products of combustion that include coarse ash particulate. Apparatus is provided for generating power from the hot products of combustion.
Abstract:
A method for the thermal utilization of combustible components of waste materials of different properties and origin, independently of the degree of contamination with heavy metals and toxic organic compounds or organic chlorine-containing compounds. The waste materials are subjected to the method steps of pyrolysis, comminution, classification, gasification and gas purification in order to produce a clean gas which can be used for various purposes and as a source of energy and an elution-proof, mineral, solid residue which can be easily disposed of.
Abstract:
An apparatus and method for decontaminating petroleum contaminated soil and the like, and which comprises a rotary drum dryer which is adapted to convey the soil therethrough, and which includes a burner at one end for generating a heated gas stream which passes through the dryer to heat the soil to a temperature sufficient to volatilize the contaminates. A fixed enclosure is mounted to surround the discharge end of the dryer and the enclosure receives the heated soil as it is discharged from the dryer. Any entrained dust particles which are withdrawn with the exhaust gas stream from the dryer, and which may remain contaminated, are separated from the gas stream and returned to the enclosure. In the enclosure, the returned dust is mixed with the heated soil so as to cause the dust to be heated and to release its volatile contaminates, without risk of the returned dust being again entrained in the gas stream flowing through the dryer. Also, the volatilized contaminates released from the dust will be drawn back into the gas stream passing through the dryer and a significant portion thereof will be oxidized by the burner flame.
Abstract:
Organic refuse is pyrolyzed to form disposable solids and gas. The gas is washed at a temperature well above 100.degree. C. with wash oil, which is recirculated. Spent wash oil is pyrolyzed with contaminants and further organic refuse. The washed gas is filtered through sorption means to remove acid and or other noxious gases therefrom before being cooled well below 100.degree. C. to condense water vapor and other constituents having boiling points within the range of from, e.g., 75.degree. to 150.degree. C. After separating the resulting condensate, thus-purified combustion gas is used, e.g., as a fuel source for the organic-refuse pyrolysis.
Abstract:
In a method for the combined processing for disposal of industrial, problem waste, of problem free waste and of slush as resulting from sewage treatment, wherein the problem waste is pyrolytically carbonized on a continuous, revolving basis, and wherein the resulting coke is mixed with heated acidized slush, filtered and drained. The gas developed during carbonization is washed and used as heating agent; the mixture is then mixed with problem free waste to obtain a coke-slush waste mixture and the said latter mixture is burnt.
Abstract:
Organic material, such as kraft black liquor, organic fuels, garbage and organic wastes, is destructively distilled and pyrolyzed at an elevated temperature and for a time sufficient to break down the material to noncombustible solids and to a stable gaseous clean burning fuel. The temperature is maintained to preclude recombination of intermediate products formed during the pyrolysis and which would otherwise pollute the atmosphere. A controlled amount of oxygen is continuously introduced during the cracking to provide energy by exothermic oxidative reactions but the oxygen is insufficient to effect stoichiometric or in other words complete combustion.
Abstract:
A thermochemical system & method may be configured to convert an organic feedstock to various products. A thermochemical system may include a solid material feed module, a reactor module, an afterburner module, and a solid product finishing module. The various operational parameters (temperature, pressure, etc.) of the various modules may vary depending on the desired products. The product streams may be gaseous, vaporous, liquid, and/or solid.
Abstract:
A thermochemical system & method may be configured to convert an organic feedstock to various products. A thermochemical system may include a solid material feed module, a reactor module, an afterburner module, and a solid product finishing module. The various operational parameters (temperature, pressure, etc.) of the various modules may vary depending on the desired products. The product streams may be gaseous, vaporous, liquid, and/or solid.
Abstract:
Systems and methods are disclosed for pyrolysis of waste feed material. Some systems include a main retort and a secondary retort. Syngas is produced by pyrolysis in the main retort, and is then mixed with combustion air and ignited, in some cases to produce energy. Carbon char travels to the secondary retort and is exhausted from the system through an airlock.