Abstract:
A spectroscopy system is provided which is optimized for operation in the VUV region and capable of performing well in the DUV-NIR region. Additionally, the system incorporates an optical module which presents selectable sources and detectors optimized for use in the VUV and DUV-NIR. As well, the optical module provides common delivery and collection optics to enable measurements in both spectral regions to be collected using similar spot properties. The module also provides a means of quickly referencing measured data so as to ensure that highly repeatable results are achieved. The module further provides a controlled environment between the VUV source, sample chamber and VUV detector which acts to limit in a repeatable manner the absorption of VUV photons. The use of broad band data sets which encompass VUV wavelengths, in addition to the DUV-NIR wavelengths enables a greater variety of materials to be meaningfully characterized. Array based detection instrumentation may be exploited to permit the simultaneous collection of larger wavelength regions.
Abstract:
An imaging system comprising a lens, a detector array (e.g., focal plane array), a signal processing module and a shutter, wherein the shutter is positioned in front of the lens (between the lens and the scene being imaged). This front lens shutter mount configuration allows offset correction to compensate for internal radiant flux and other deficiencies associated with conventional systems.
Abstract:
Noxious emissions present in the exhaust gases of an internal-combustion engine of a motor vehicle are controlled by making use of an IR spectrophotometer provided on board the motor vehicle, for the purpose of obtaining an analysis of all the main components of the exhaust gases of the engine. The IR spectrophotometer is of the type with electrostatic micro-shutters so as to present overall dimensions designed to enable its use on board the motor vehicle.
Abstract:
Encoded spatio-spectral information processing is performed using a system having a radiation source, wavelength dispersion device and two-dimensional switching array, such as digital micro-mirror array (DMA). In one aspect, spectral components from a sample are dispersed in space and modulated separately by the switching array, each element of which may operate according to a predetermined encoding pattern. The encoded spectral components can then be detected and analyzed. In a different aspect, the switching array can be used to provide a controllable radiation source for illuminating a sample with radiation patterns that have predetermined characteristics and separately encoded components. Various applications are disclosed.
Abstract:
A disposable tip adapted for use in connection with an optical probe of an instrument. The tip includes a one-piece molded elastomeric base member having a boot and an opaque tissue-engaging surface. The boot releasably mates with and provides an interference/friction fit to the probe. The tissue-engaging surface surrounds and extends from the boot. A window in the base member extends into the boot to transmit light between the probe and tissue. A layer of optically transparent material covers the window on the tissue-engaging surface. Adhesive on the tissue-engaging surface of the base member releasably secures the probe to the tissue being analyzed.
Abstract:
Light from an object moving through an imaging system is collected, dispersed, and imaged onto a time delay integration (TDI) detector that is inclined relative to an axis of motion of the object, producing a pixilated output signal. In one embodiment, the movement of the image object over the TDI detector is asynchronous with the movement of the output signal producing an output signal that is a composite of the image of the object at varying focal point along the focal plane. In another embodiment, light from the object is periodically incident on the inclined TDI detector, producing a plurality of spaced apart images and corresponding output signals that propagate across the TDI detector. The inclined plane enables images of FISH probes or other components within an object to be produced at different focal points, so that the 3D spatial relationship between the FISH probes or components can be resolved.
Abstract:
An individualized modeling equation for predicting a patient's blood glucose values is generated as a function of non-invasive spectral scans of a body part and an analysis of blood samples from the patient, and is stored on a central computer. The central computer predicts a blood glucose value for the patient as a function of the individualized modeling equation and a non-invasive spectral scan generated by a remote spectral device. If the spectral scan falls within the range of the modeling equation, the predicted blood glucose level is output to the patient. If the spectral scan falls outside the range of the modeling equation, regeneration of the model is required, and the patient takes a number of noninvasive scans and an invasive blood glucose level determination. The computer regenerates the individualized modeling equation as a function of the set of spectral scans and corresponding blood glucose values.
Abstract:
The present invention relates to a fluorescence endoscope imaging system. The system uses first and second light sources to provide fluorescence and reflectance images of tissue being examined. The imaging system also includes an electronic controller that actuates the illumination of the system by switching current through the first light source between a first illumination level and a second illumination level such that the tissue is illuminated at the first or second illumination level. An imaging device mounted at the distal end of the device is used to collect both images.
Abstract:
In embodiments, spectroscopic monitor monitors modulated light signals to detect low levels of contaminants and other compounds in the presence of background interference. The monitor uses a spectrometer that includes a transmissive modulator capable of causing different frequency ranges to move onto and off of the detector. The different ranges can include those with the desired signal and those selected to subtract background contributions from those with the desired signal. Embodiments of the system are particularly useful for monitoring metal concentrations in combustion effluent.