Abstract:
The present disclosure is directed to a system and method for dynamic and adaptive load balancing. An example method includes receiving, at a network device, a data packet to be sent via one or more aggregation groups, where the aggregation groups each comprise a plurality of aggregate members. The example method further includes determining, based on the data packet, a flow identifier of a flow to which the data packet belongs and determining a state of the flow. The example method also includes determining, based on the flow identifier and the state of the flow, an assigned member of the plurality of aggregate members for the flow and communicating the packet via the assigned member.
Abstract:
The present disclosure is directed to a system and method for creating overlapping bonded groups of downstream channels that can provide increased channel capacity to improve packing densities, while at the same time limiting complexity and cost increases of new receivers and allowing the continued operation of legacy receivers.
Abstract:
The present disclosure is directed to a system and method for performing the outphasing technique without using a combiner at the output of two power amplifiers to reduce loss and distortions.
Abstract:
Connection patterns for device packaging allow high density circuitry dies to be assembled into packages of manufacturable size. The connection patterns may be patterns for solder ball arrays or other types of connection mechanisms under a semiconductor package. Despite the increased density of the connection patterns, the connection patterns meet the demanding crosstalk specifications for high speed operation of the high density circuitry.
Abstract:
The present invention is an integrated cable modem tuner. In one embodiment, the upstream path and the downstream path are integrated on a common semiconductor substrate. The down-stream path can include a TV tuner and digital receiver portion that is integrated on a common semiconductor substrate with the power amplifier of the upstream path. In another embodiment, the TV tuner is implemented on a first semiconductor substrate and the digital receiver portion and the power amplifier are configured on a second semiconductor substrate. However, the two substrates are mounted on a common carrier so that the cable modem appears to be a single chip configuration to the user.
Abstract:
A method for a wireless network node to support an extended control signaling is provided. The method comprises configuring a control signaling message over extended control symbols on a layer 1 (L1) downlink control channel, the control signaling message encoded over an increased aggregation of control channel elements (CCEs) in a time domain; placing the controlling signaling message in a designated set of subframes on the L1 downlink control channel; indicating a support for the extended control signaling to one or more UEs; indicating to the one or more UEs a position of the designated set of the subframes in a spare field of the Master Information Block (MIB); and transmitting the control signaling message to the one or more UEs over the L1 downlink control channel.
Abstract:
The present disclosure is directed to systems, apparatuses, and methods for operating a wireless local area network (WLAN) modem to perform WLAN channel change in a WLAN environment that is inhabited by radar devices, and therefore subject to a Dynamic Frequency Selection (DFS) requirement defined by the appropriate WLAN governing standards. Specifically, the present disclosure is directed to an apparatus and method for reducing or eliminating the amount of time in which a WLAN transceiver cannot transmit/receive data traffic while listening for radar signals on a channel allocated to radar devices for the minimum listening time specified by DFS.
Abstract:
Systems and methods for transmitting packets over a network of communication channels are provide. A system according to the invention may include first and second nodes in communication with a coax backbone. The first node may further include a retransmission buffer. The system may also include a network access coordinator operative to coordinate access of the nodes to the coax backbone. In a time period at least one first packet is transmitted by the first node to the second node. The first packet may include an indication that retransmission service is applied. The first packet may also include a indication of the length corresponding to the packet. If, during the first time period the packet is not received by the second node, the second node is operative to send a retransmission request to the network access coordinator.
Abstract:
A communication device includes a communication interface and a processor configured to generate, transmit, receive, and process signals. The communication device generates orthogonal frequency division multiplexing (OFDM) frame(s) that include a two-dimensional (2D) start burst marker (BM), a data payload, and a 2D stop BM, and transmits the OFDM frame(s) to another communication device. Alternatively, the communication device receives OFDM frame(s) that include a 2D start BM and a 2D stop BM, and then identifies a data payload within those OFDM frame(s) based on the 2D start burst marker and a 2D stop BM. The 2D start and stop BMs are based on predetermined sequences having particular formats based on corresponding 2D sub-carrier and OFDM/A frame based structure. A receiver communication device then detects the 2D start BM and 2D stop BM within the received OFDM frame(s) based on knowledge of these predetermined sequences and particular formats.
Abstract:
The problem with duty-cycle correction circuits used by conventional frequency doublers is that they typically analog solutions, such as variable delay lines with long chains of inverters or buffers, that directly adjust the reference signal used by a phase-locked loop (PLL). These solutions can considerably increase the noise (e.g., thermal noise and supply noise) of the reference signal, as well as the overall power consumption and cost of the PLL. Rather than directly correct the duty-cycle of the reference signal, the present disclosure is directed to an apparatus and method for measuring the period error between adjacent cycles of a frequency doubled reference signal in terms of cycles of the output signal generated by the PLL (or some other higher frequency signal) and adjusting the division factor of the PLL frequency divider to compensate for the measured period error.