摘要:
Surface acoustic wave devices and methods of forming such devices using CVD techniques are disclosed and described. A mold can be provided which has an interface surface configured to inversely match a configuration intended for the working surface of a diamond layer in a tool. An adynamic diamond mass or layer is then deposited upon the diamond interface surface of the mold, and a support layer is joined to the growth surface of the adynamic diamond layer. At least a portion of the mold is then removed to expose the working surface of the diamond which has received a shape which inversely corresponds to the configuration of the mold's diamond interface surface. Such methods can be used to produce a precursor wafer having multiple partitioned surface acoustic wave devices.
摘要:
A diamond composite heat spreader having a low thermal mismatch stress can improve reliability and cost of diamond-based heat spreaders. A diamond composite heat spreader can have a thermally conductive base and a diamond film in thermal contact with the thermally conductive base. The diamond film and the thermally conductive base can have a residual thermal mismatch stress which is less than about 75% of a residual thermal mismatch stress which would result from forming the diamond film on the thermally conductive base using a high temperature deposition process at 700° C. The diamond film can be formed on the thermally conductive base using a low temperature vapor deposition process performed at a temperature from about 10° C to less than 700° C, and typically lower than about 450° C. The diamond films further have high thermal diffusivity and thermal conductivity which allow for dramatic improvements in heat transfer away from a heat source without the need for growing a thick diamond film. By providing a low temperature deposition of the diamond film, residual thermal mismatch stress can be significantly reduced, while allowing for use of well known heat spreaders such as standard copper heat spreaders and associated technologies.
摘要:
A diamond composite heat spreader having a variable thermal conductivity gradient can improve control of heat transfer based on a specific application. A diamond-containing region of the heat spreader can contain diamond particles such that the diamond concentration and/or the diamond particle size a varied to produce a desired thermal conductivity gradient. Regions proximate to a heat source can have a higher thermal conductivity than regions further away from the heat source. Thin diamond films can also be used in conjunction with the particulate diamond in order to provide a region of maximum thermal conductivity adjacent a heat source. By providing a variable thermal conductivity gradient, more expensive materials such as diamond film and larger diamond particles can be selectively used in regions closer to a heat source, while allowing for cheaper smaller diamond particles and materials to be used farther away from the heat source where thermal conductivity can be lower without sacrificing overall performance.
摘要:
A superabrasive particle coated with a solidified coating of a molten braze alloy that is chemically bonded to the superabrasive particle is disclosed and described. In one aspect, the reactive metal alloy may be chemically bonded to at least about 80% of an outer surface of the superabrasive particle. Various methods for making and using such a coated superabrasive particle are additionally disclosed and described.
摘要:
An amorphous diamond electrical generator having a cathode at least partially coated with amorphous diamond material and an intermediate member coupled between the cathode and an anode. The amorphous diamond material can have at least about 90% carbon atoms with at least about 20% of the carbon atoms bonded in a distorted tetrahedral coordination. The amorphous diamond coating has an energy input surface in contact with a base member of the cathode and an electron emission surface opposite the energy input surface. The electron emission surface can have an asperity height of from about 10 to about 1,000 nanometers and is capable of emitting electrons upon input of a sufficient amount of energy. The intermediate member can be coupled to the electron emission surface of the amorphous diamond coating such that the intermediate member has a thermal conductivity of less than about 100 W/mK and a resistivity of less than about 80 μΩ-cm at 20° C. The amorphous diamond electrical generator is a thermionic emission device having improved electron emission properties.
摘要:
A superabrasive wire saw having a plurality of individual coated superabrasive particles attached to a wire with an organic binder is disclosed and described. The superabrasive particle can be coated with a solidified coating of a molten braze alloy that is chemically bonded to the superabrasive particle. The organic binder can optionally contain filler materials and/or an organometallic coupling agent to improve the retention of coated superabrasive particles. The resulting superabrasive wire saws can be produced having diameters of less than 0.5 mm which significantly reduce kerf loss. Various methods for making and using such a superabrasive wire saw are additionally disclosed and described.
摘要:
Compression bonding tools having a CVD-formed pressing member with a non-reactive working surface are disclosed and described. Generally speaking, the pressing member is coupled to a tool body, which may include head member, and a tail member. In some aspects, the tool body may include a support member of a super hard material that is coupled to the pressing member along a bonding surface thereof. Further, in some aspects, the tool body may contain a heat directing member that facilitates the transfer of heat energy in a direction toward the pressing member. Such compression bonding tools have been found useful in a variety of well-known procedures, such as tap bonding systems (TAB).
摘要:
The present invention provides diamond tools, and a method for the formation thereof, using CVD techniques. In one aspect, a mold is provided which has an interface surface configured to inversely match a configuration intended for the working surface of a diamond layer in a tool. After the mold is provided, various CVD techniques may be used to deposit diamond layers upon the diamond interface surface of the mold. Following diamond deposition upon the diamond interface surface, the mold may be removed by various means, such as chemical etching, or the mold may be left intact for certain applications, such as SAW filters. Thus, the working surface of the diamond receives a shape which inversely corresponds to the configuration of the mold's diamond interface surface. The diamond layer may then be incorporated into a tool, if such incorporation has not yet taken place.
摘要:
The present invention describes a diamond tool with diamond bonded chemically by a braze that contains either Cr, Mn, SI, or Al or mixtures or alloys thereof. The diamond tool is made by infiltrating the braze into a matrix metal that contains diamond in either form of grits or polycrystalline bodies.
摘要:
Superabrasive cutting elements, backed compacts and methods for their manufacture are disclosed wherein metal coated superabrasive particles are cemented under HPHT conditions. The superabrasives bond to the metal of the coating and the metal coatings of adjacent particles bond to each other forming a matrix. A binding aid with thermal expansion characteristics close to that of the superabrasive particle can be infiltrated through or otherwise mixed with the particles to assist in the bonding between the metal coatings and to fill in voids. Catalyst and non-catalyst binding aids can also be used. Uncoated, smaller superabrasive particles can be interstitially dispersed among the coated particles to increase the superabrasive concentration and can self bond to form a cemented/sintered structure. Tungsten is a preferred metal coating and silicon is a preferred binding/sintering aid. The superabrasive can be diamond, cubic boron nitride, boron doped diamond or crushed, sintered polycrystalline aggregates. The free-standing cutting element can have a brazeable layer and the compact can be backed with, for example, cemented tungsten carbide. Free-standing cutting elements can be thermally stable up to 1,200.degree. C. Backed compacts can be thermally stable up to 1,100.degree. C.