Abstract:
Described herein are non-natural NAD+-dependent alcohol dehydrogenases (ADHs) capable of at least two fold greater conversion of methanol or ethanol to formaldehyde or acetaldehyde, respectively, as compared to its unmodified counterpart. Nucleic acids encoding the non-natural alcohol dehydrogenases, as well as expression constructs including the nucleic acids, and engineered cells comprising the nucleic acids or expression constructs are described. Also described are engineered cells expressing a non-natural NAD+-dependent alcohol dehydrogenase, optionally include one or more additional metabolic pathway transgene(s), methanol metabolic pathway genes, target product pathway genes, cell culture compositions including the cells, methods for promoting production of the target product or intermediate thereof from the cells, compositions including the target product or intermediate, and products made from the target product or intermediate.
Abstract:
The invention provides a computer readable medium or media, having: (a) a first data structure relating a plurality of reactants to a plurality of reactions from a first cell, each of said reactions comprising a reactant identified as a substrate of the reaction, a reactant identified as a product of the reaction and a stoichiometric coefficient relating said substrate and said product; (b) a second data structure relating a plurality of reactants to a plurality of reactions from a second cell, each of said reactions comprising a reactant identified as a substrate of the reaction, a reactant identified as a product of the reaction and a stoichiometric coefficient relating said substrate and said product; (c) a third data structure relating a plurality of intra-system reactants to a plurality of intra-system reactions between said first and second cells, each of said intra-system reactions comprising a reactant identified as a substrate of the reaction, a reactant identified as a product of the reaction and a stoichiometric coefficient relating said substrate and said product; (d) a constraint set for said plurality of reactions for said first, second and third data structures, and (e) commands for determining at least one flux distribution that minimizes or maximizes an objective function when said constraint set is applied to said first and second data structures, wherein said at least one flux distribution is predictive of a physiological function of said first and second cells. The first, second and third data structures also can include a plurality of data structures. Additionally provided is a method for predicting a physiological function of a multicellular organism. The method includes: (a) providing a first data structure relating a plurality of reactants to a plurality of reactions from a first cell, each of said reactions comprising a reactant identified as a substrate of the reaction, a reactant identified as a product of the reaction and a stoichiometric coefficient relating said substrate and said product; (b) providing a second data structure relating a plurality of reactants to a plurality of reactions from a second cell, each of said reactions comprising a reactant identified as a substrate of the reaction, a reactant identified as a product of the reaction and a stoichiometric coefficient relating said substrate and said product; (c) providing a third data structure relating a plurality of intra-system reactants to a plurality of intra-system reactions between said first and second cells, each of said intra-system reactions comprising a reactant identified as a substrate of the reaction, a reactant identified as a product of the reaction and a stoichiometric coefficient relating said substrate and said product; (d) providing a constraint set for said plurality of reactions for said first, second and third data structures; (e) providing an objective function, and (f) determining at least one flux distribution that minimizes or maximizes an objective function when said constraint set is applied to said first and second data structures, wherein said at least one flux distribution is predictive of a physiological function of said first and second cells.
Abstract:
The invention provides non-naturally occurring microbial organisms having a 4-hydroxybutyrate, 1,4-butanediol, or other product pathway and being capable of producing 4-hydroxybutyrate, 1,4-butanediol, or other product, wherein the microbial organism comprises one or more genetic modifications. The invention additionally provides methods of producing 4-hydroxybutyrate, 1,4-butanediol, or other product or related products using the microbial organisms.
Abstract:
At the time of producing a polyester by using a dicarboxylic acid component and a biomass-resource-derived diol as raw materials, a polyester is efficiently produced with good color tone, as the raw material diol derived from biomass resources, a diol in which the content of a cyclic carbonyl compound having a carbon atom number of 5 or 6 is from 0.01 to 12 ppm by mass, is used, and by controlling the content of a cyclic carbonyl compound having a carbon atom number of 5 or 6 in the raw material diol to fall in a prescribed range, the color tone of the polyester is improved.
Abstract:
An object of the present invention is to provide high-quality 1,4BG capable of working out to a raw material of PBT with good color tone, by efficiently removing and refining impurities mixed when producing a biomass-derived 1,4BG on an industrial scale and the present invention relates to a production method of refined 1,4BG, where a crude 1,4BG-containing solution is obtained from refined raw material 1,4BG obtained by removing bacterial cells, salt contents and water from the fermentation culture medium, through a step of removing high-boiling-point components and/or low-boiling-point components by distillation and/or a step of converting an unsaturated compound to a hydride and the target product is obtained as a side stream in a further distillation step.
Abstract:
The invention provides non-naturally occurring microbial organisms having a (2-hydroxy-3-methyl-4-oxobutoxy) phosphonate (2H3M40P) pathway, p-toluate pathway, and/or terephthalate pathway. The invention additionally provides methods of using such organisms to produce 2H3M40P, p-toluate or terephthalate. Also provided herein are processes for isolating bio-based aromatic carboxylic acid, in particular, p-toluic acid or terephthalic acid, from a culture medium, wherein the processes involve contacting the culture medium with sufficient carbon dioxide (C02) to lower the pH of the culture medium to produce a precipitate comprised of the aromatic carboxylic acid.
Abstract:
The invention provides non-naturally occurring microbial organisms having a toluene, benzene, p-toluate, terephthalate, (2-hydroxy-3-methyl-4-oxobutoxy)phosphonate, (2-hydroxy-4-oxobutoxy)phosphonate, benzoate, styrene, 2,4-pentadienoate, 3-butene-1ol or 1,3-butadiene pathway. The invention additionally provides methods of using such organisms to produce toluene, benzene, p-toluate, terephthalate, (2-hydroxy-3-methyl-4-oxobutoxy)phosphonate, (2-hydroxy-4-oxobutoxy)phosphonate, benzoate, styrene, 2,4-pentadienoate, 3-butene-1ol or 1,3-butadiene.
Abstract:
The invention provides a non-naturally occurring microbial biocatalyst including a microbial organism having a 4-hydroxybutanoic acid (4-HB) biosynthetic pathway having at least one exogenous nucleic acid encoding 4-hydroxybutanoate dehydrogenase, succinyl-CoA synthetase, CoA-dependent succinic semialdehyde dehydrogenase, or α-ketoglutarate decarboxylase, wherein the exogenous nucleic acid is expressed in sufficient amounts to produce monomeric 4-hydroxybutanoic acid (4-HB). Also provided is a non-naturally occurring microbial biocatalyst including a microbial organism having 4-hydroxybutanoic acid (4-HB) and 1,4-butanediol (BDO) biosynthetic pathways, the pathways include at least one exogenous nucleic acid encoding 4-hydroxybutanoate dehydrogenase, succinyl-CoA synthetase, CoA-dependent succinic semialdehyde dehydrogenase, 4-hydroxybutyrate:CoA transferase, 4-butyrate kinase, phosphotransbutyrylase, α-ketoglutarate decarboxylase, aldehyde dehydrogenase, alcohol dehydrogenase or an aldehyde/alcohol dehydrogenase, wherein the exogenous nucleic acid is expressed in sufficient amounts to produce 1,4-butanediol (BDO). Additionally provided are methods for the production of 4-HB and BDO.
Abstract:
The invention provides non-naturally occurring microbial organisms having a butadiene pathway. The invention additionally provides methods of using such organisms to produce butadiene.
Abstract:
The present disclosure relates to chemo-enzymatic processes for the preparation of lactones (including, e.g., macrolactones, γ-lactones, and δ-lactones) and/or macrocyclic ketones, which are compounds of industrial value, for example, for use as fragrance ingredients. The chemo-enzymatic processes combine the in vivo microbial production of fatty acid derivatives and the subsequent ex vivo synthetic transformation of the fatty acid derivatives to provide the lactones and macrocyclic ketones.