Abstract:
A photoresist composition includes a binder resin, a photo acid generator, an acryl resin having four different types of monomers, and a solvent.
Abstract:
A method for manufacturing a photosensitive film pattern includes: forming a thin film on a substrate; forming a photosensitive film on the thin film; arranging an exposure apparatus including a photo-modulation element on the photosensitive film; exposing the photosensitive film using the exposure apparatus according to an exposure pattern of the photo-modulation element; and developing the exposed photosensitive film to form a photosensitive film pattern. The exposure pattern includes a main pattern of a quadrangular shape and a at least one assistance pattern positioned at a corner of the main pattern. The photosensitive film pattern has a quadrangular shape with a long edge and a short edge, and a corner with a curved surface having a curvature radius of 20% to 40% of a length of the short edge.
Abstract:
The present invention relates to a photoresist composition for digital exposure and a method of fabricating a thin film transistor substrate. The photoresist composition for digital exposure includes a binder resin including a novolak resin and a compound represented by the chemical formula (1), a photosensitizer including a diazide-based compound, and a solvent: wherein R1-R9 each include a hydrogen atom, an alkyl group, or a benzyl group, a is an integer from 0 to 10, b is an integer from 0 to 100, and c is an integer from 0 to 10.
Abstract:
A photoresist composition, a method of forming a pattern using the photoresist composition, and a method of manufacturing a display substrate are disclosed. A photoresist composition includes an alkali-soluble resin, a quinone diazide-based compound, a multivalent phenol-based compound, and a solvent. Therefore, photosensitivity for light having a wavelength in a range of about 392 nm to about 417 nm may be improved, and reliability of forming a photo pattern and a thin film pattern using the photoresist composition may be improved.
Abstract:
A digital exposure apparatus includes a displaceable stage, a light source part, a digital micro mirror part and a micro lens part. A substrate is disposed on the stage. The light source part generates a first light. The digital micro mirror part is disposed over the stage. The digital micro mirror part includes a plurality of digital micro mirrors. The digital micro mirror converts the first light into one or more second light beams. The micro lens part is disposed between the stage and the digital micro mirror part and includes a plurality of micro lenses. The micro lenses convert the one or more second light beams into one or more third light beams which are irradiated upon the substrate. The third light has an oval cross sectional shape.
Abstract:
A photosensitive composition and a method of manufacturing a substrate used for a display device are disclosed. The photosensitive composition includes an acrylic based copolymer, a photo-initiator, a photo-sensitizer and a solvent. Thus, a photosensitivity of the photosensitive composition for ultra violet light of a long wavelength may be improved.
Abstract:
A photoresist composition and method of forming pattern using the same are provided. The photoresist composition contains an alkali-soluble novolac resin, a photosensitizer including a compound of Chemical Formula 1, and a solvent.
Abstract:
A display panel includes a substrate, signal lines, a thin film transistor, a pixel electrode and a dummy opening. The substrate has a display area and a peripheral area surrounding the display area. The signal lines are disposed on the substrate and intersect each other to define a unit pixel. The thin film transistor is electrically connected to the signal lines and disposed at the unit pixel. The pixel electrode is electrically connected to the thin film transistor. The pixel electrode is formed in the unit pixel. The dummy opening is disposed at the peripheral area and spaced apart from the signal lines.
Abstract:
A photoresist composition capable of forming a high resolution pattern without an additional heating process includes an alkali-soluble phenol polymer in an amount of 10 to 70 parts by weight, including at least one unit of Formula 1, a photo-acid generator in an amount of 0.5 to 10 parts by weight, a dissolution inhibitor in an amount of 5 to 50 parts by weight, including at least one unit of Formula 2, and a solvent in an amount of 10 to 90 parts by weight, wherein the amounts of the foregoing components is based on a total of 100 parts by weight of alkali-soluble phenol polymer, photo-acid generator, dissolution inhibitor, and solvent, and wherein Formulas 1 and 2 have the structures: wherein R is a methyl group, wherein R1, R2 and R3 are the same or different and are hydrogen or t-butyl vinyl ether protective groups.
Abstract:
A photoresist composition includes 5% to 50% by weight of an alkali-soluble resin, 0.5% to 30% by weight of a quinone diazide compound, 0.1% to 15 % by weight of a curing agent, and a remainder of an organic solvent. A method of forming a metal pattern includes coating a photoresist composition on a base substrate having a metal layer, and forming a first photoresist film. The photoresist composition includes 5% to 50% by weight of an alkali-soluble resin, 0.5% to 30% by weight of a quinone diazide compound, 0.1% to 15% by weight of a curing agent, and a remainder of an organic solvent. The first photoresist film is patterned, and forms a first photo pattern. The base substrate having the first photo pattern is heated, and forms a first baked pattern. The metal layer is patterned using the first baked pattern, and forms a metal pattern.