Abstract:
A method of forming a film on a semiconductor substrate by plasma enhanced atomic layer deposition (PEALD), includes: introducing a nitrogen- and hydrogen-containing reactive gas and a rare gas into a reaction space inside which the semiconductor substrate is placed; introducing a precursor in pulses of less than 1.0-second duration into the reaction space wherein the reactive gas and the rare gas are introduced; exiting a plasma in pulses of less than 1.0-second duration immediately after the precursor is shut off; and maintaining the reactive gas and the rare gas as a purge of less than 2.0-second duration.
Abstract:
A method of forming a conformal dielectric film having Si—N bonds on a substrate having a patterned surface includes: introducing a reactant gas into a reaction space; introducing a silicon precursor in pulses of less than 5-second duration into the reaction space; applying a first RF power to the reaction space during the pulse of the silicon precursor; applying a second RF power to the reaction space during the interval of the silicon precursor pulse, wherein an average intensity of the second RF power during the interval of the silicon precursor pulse is greater than that of the first RF power during the pulse of the silicon precursor; and repeating the cycle to form a conformal dielectric film having Si—N bonds with a desired thickness on the patterned surface of the substrate.
Abstract:
A resist underlayer composition, including a solvent, and an organosilane condensation polymerization product of hydrolyzed products produced from a compound represented by Chemical Formula 1, a compound represented by Chemical Formula 2, and a compound represented by Chemical Formula 3.
Abstract:
A method of forming a dielectric layer, the method including sequentially forming a first oxide layer, a nitride layer, and a second oxide layer on a substrate by performing a plasma-enhanced atomic layer deposition process, wherein a first nitrogen plasma treatment is performed after forming the first oxide layer.
Abstract:
Disclosed herein are a touch panel and a method for manufacturing the same. The touch panel includes: a transparent substrate formed of silicon; and sensing electrodes each formed in a metal mesh pattern on one surface or both surfaces of the transparent substrate.Since the transparent substrate is formed of silicon having excellent adhesive property, the sensing electrode can be formed on a transparent substrate even without a separate adhesive material.
Abstract:
A method of forming stress-tuned dielectric films having Si—N bonds on a semiconductor substrate by modified plasma enhanced atomic layer deposition (PEALD), includes: introducing a nitrogen-and hydrogen-containing reactive gas and an additive gas into a reaction space inside which a semiconductor substrate is placed; applying RF power to the reaction space using a high frequency RF power source and a low frequency RF power source; and introducing a hydrogen-containing silicon precursor in pulses into the reaction space wherein a plasma is excited, thereby forming a stress-tuned dielectric film having Si—N bonds on the substrate.
Abstract:
A photoresist underlayer composition includes a solvent, and a polysiloxane resin represented by Chemical Formula 1: {(SiO1.5—Y—SiO1.5)(SiO2)y(XSiO1.5)z}(OH)e(OR1)f. [Chemical Formula 1]
Abstract:
A resist underlayer composition includes a solvent, and an organosilane condensation polymerization product of: a compound represented by the following Chemical Formula 1, a compound represented by the following Chemical Formula 2, and a compound represented by the following Chemical Formula 3, [R1O]3Si—X [Chemical Formula 1] [R2O]3Si—R3 [Chemical Formula 2] [R4O]3Si—Si[OR5]3. [Chemical Formula 3]
Abstract:
A method of forming dielectric film having Si—N bonds on a semiconductor substrate by plasma enhanced atomic layer deposition (PEALD), includes: introducing a nitrogen- and hydrogen-containing reactive gas and a rare gas into a reaction space inside which the semiconductor substrate is placed; introducing a hydrogen-containing silicon precursor in pulses of less than 1.0-second duration into the reaction space wherein the reactive gas and the rare gas are introduced; exiting a plasma in pulses of less than 1.0-second duration immediately after the silicon precursor is shut off; and maintaining the reactive gas and the rare gas as a purge of less than 2.0-second duration.
Abstract:
A method of forming a conformal dielectric film having Si—N bonds on a semiconductor substrate by plasma enhanced chemical vapor deposition (PECVD) includes: introducing a nitrogen- and hydrogen-containing reactive gas and an additive gas into a reaction space inside which a semiconductor substrate is placed; applying RF power to the reaction space; and introducing a hydrogen-containing silicon precursor in pulses into the reaction space wherein a plasma is excited, thereby forming a conformal dielectric film having Si—N bonds on the substrate.