摘要:
A memory cell architecture utilizing a dual access gate and dual wordlines is disclosed. The cell is comprised of a first transistor connected between a digitline and a cellplate. The transistor is responsive to a read wordline to enable the cell to be read. An active device, such as a second transistor, is provided for modifying at least one conductive characteristic of the first transistor according to the state of a signal on the digitline. The conductive characteristic that is modified may be, for example, the threshold voltage or the transistor's channel resistance. Modification of the first transistor's characteristics is representative of writing information to the memory cell. A circuit structure for implementing the circuit architecture is also disclosed together with a method of operating a memory cell.
摘要:
Disclosed is a process for forming a shallow junction with a variable concentration profile gradation of dopants. The process of the present invention comprises, first providing and masking a surface on an in-process integrated circuit wafer on which the shallow junction is to be formed. Next, a low ion velocity and low energy ion bombardment plasma doping or PLAD operation is conducted to provide a highly doped inner portion of a shallow junction. In a further step, a higher ion velocity and energy conventional ion bombardment implantation doping operation is conducted using a medium power implanter to extend the shallow junction boundaries with a lightly doped outer portion. An anneal step follows. The result is a shallow junction with a variable concentration profile gradation of dopant. The junction is suitable for forming source and drain regions in MOS transistors, especially where a contact or interconnect is intended to engage the source and drain regions. The variable concentration profile gradation of dopants helps to maintain proper threshold voltage levels and reduces reverse bias current leakage.
摘要:
An improved transistor structure includes an insulated conductive gate spacer which is contacted and driven separately from the gate of the transistor. The gate spacer serves as a control or second gate for the transistor and may be used throughout an integrated circuit or it may be preferred to use the improved transistor only in critical speed paths of an integrated circuit. Delays within circuits including the improved transistor are reduced since the drain voltage can be higher than VCC and the BVDSS and subthreshold voltage are substantially higher than standard LDD transistors. When the improved transistor is used selectively within an integrated circuit, the remaining devices can be structured as standard LDD transistors using the gate spacers in a conventional manner.
摘要:
A method for forming field oxide comprises the steps of forming a pad oxide layer over a semiconductor substrate, then forming a silicon layer over the pad oxide layer. A patterned mask is formed over the silicon layer and the silicon layer is etched to form openings in the silicon layer. Next, a blanket nitride layer is formed over the silicon and within the openings, and the nitride layer is then planarized to remove the nitride which overlies the silicon which leaves the nitride in the openings. Subsequent to the step of planarizing the nitride, the silicon layer is removed thereby forming openings in the nitride layer. The substrate is oxidized at the openings in the nitride layer to form field oxide from the substrate.
摘要:
The present invention teaches a method for fabricating semiconductors. The method initially comprises the step of forming a conformal layer superjacent at least two conductive layers. The conformal layer preferably comprises tetraethylorthosilicate ("TEOS") and has a thickness of at least 50 .ANG.. Subsequently, a barrier layer is formed superjacent the conformal layer to prevent subsequent layers from diffusing into active regions. The barrier layer preferably comprises Si.sub.3 N.sub.4, though other suitable materials known to one of ordinary skill in the art may be employed. Further, a glass layer is then formed superjacent the barrier layer. The glass layer comprises at least one of SiO.sub.2, phosphosilicate glass, borosilicate glass, and borophosphosilicate glass, and has a thickness of at least 1 k.ANG.. Upon forming the glass layer, the glass layer is heated to a temperature of at least 800.degree. C. for at least 15 minutes while introducing H.sub.2 and O.sub.2 at a substantially high temperature to cause vaporization, thereby causing the glass layer to reflow. Next, the glass layer is exposed to a gas and radiant energy for approximately 5 seconds to 60 seconds, thereby making said glass layer substantially planar. The radiant energy generates a temperature substantially within the range of 700.degree. C. to 1250.degree. C. Further, the gas comprises at least one of N.sub.2, NH.sub.3, O.sub.2, N.sub.2 O, Ar, Ar--H.sub.2, H.sub.2, GeH.sub.4, and a Fluorine based gas.
摘要:
An improved storage node junction between a doped active area in a semiconductor substrate and an overlying layer of polysilicon, such as the storage node junction in a DRAM memory cell. The area and perimeter of the storage node junction is significantly reduced and the junction is moved away from the adjacent isolation structure. An exemplary semiconductor device incorporating the new junction includes a storage node junction between a conductive polysilicon layer and an active area on a semiconductor substrate, the substrate having been subjected to LOCOS steps to create active areas bounded by a region of field oxide. An insulated gate electrode is formed over an active area on the substrate, which has been doped to a first conductivity type. A contact region comprising a portion of the active area extends laterally between one side of the gate electrode and the field oxide region. The contact region has a first segment adjacent to the gate electrode and a second segment interposed between the first segment and the field oxide region. The first segment is thereby isolated from the field oxide region by the second segment. The first segment is doped to a second conductivity type. A layer of storage polysilicon is formed in electrical contact with the first segment of the contact region but not the second segment of the contact region. The storage polysilicon is isolated from the field oxide through an insulating layer interposed between the storage polysilicon and the second segment of the contact region.
摘要:
The present invention is a three-transistor (3-T) SRAM cell that is made up of a half latch in combination with a dynamic random access memory (DRAM) cell. In a DRAM cell, the "0" bit state is represented by a discharged cell capacitor--a stable state. The "1" bit state, on the other hand, is represented by a charged cell capacitor--an unstable state, since the capacitor leaks rapidly toward the discharged "0" bit state. The new 3-T SRAM cell incorporates a latch which maintains the charge on the cell capacitor when the cell is in a "1" bit state. The cell circuitry includes a cell access transistor coupled to a capacitor, a pull-down transistor, and a P-channel thin film transistor (TFT) which acts as the capacitor pull-up device, the gate of the P-channel TFT also being the drain of the pull-down transistor. A separate polycrystalline silicon layer functions as the substrate of the TFT pull-up device. The 3-T SRAM cell is one half the size of a 4-T SRAM cell and about twice the size of a DRAM cell.
摘要:
A flash programmable memory device comprises first and second row lines each having memory elements therealong with the second conductive line functionally replacing the first conductive line. The memory device further includes a first program circuit for programming the memory elements along the first row line, and a second program circuit for programming memory elements along the second row line. A read circuit bypasses the first conductive line during all read cycles and reads the memory elements along the second row line.
摘要:
The present invention is a process for forming diffusion areas and field isolation regions on a silicon substrate, by the steps of: growing a field oxide layer on the surface of the substrate; forming a mask pattern which exposes a plurality of spaced-apart regions on the surface of the field oxide layer; removing portions of the field oxide layer in the exposed, spaced-apart regions with an anisotropic etch so as to leave a cavity in each spaced-apart region, each cavity having as its floor an exposed region of the silicon substrate, and having vertical walls of field oxide; angularly chamfering the rim of each cavity with a facet etch; and filling each cavity with silicon using selective epitaxial growth, and using the floor of each cavity as the seed crystal for such growth.
摘要:
The present invention teaches a method for reducing sheet resistance in the fabrication of semiconductor wafers. A silicon substrate having a gate oxide layer thereon is provided in a chamber. Subsequently, a polysilicon layer is formed superjacent the gate oxide layer in situ by exposing the silicon substrate to a first gas comprising at least one of silane, disilane, and dichlorosilane, and radiant energy at a temperature substantially within the range of 500.degree. C. to 1250.degree. C. for at least 10 seconds. The polysilicon substrate can be doped with a material such as phosphorus, arsenic and boron for example, by exposing the polysilicon to a second gas under the stated conditions. A conductive layer comprising at least one of tungsten silicide (WSi.sub.x) and titanium silicide (TiSi.sub.x) can be formed superjacent the polysilicon by exposing the polysilicon to a third gas comprising at least one of WF.sub.6, TMAT and TiCl.sub.4.