Abstract:
Provided are methods for making a device or device component by providing a multilayer structure having a plurality of functional layers and a plurality of release layers and releasing the functional layers from the multilayer structure by separating one or more of the release layers to generate a plurality of transferable structures. The transferable structures are printed onto a device substrate or device component supported by a device substrate. The methods and systems provide means for making high-quality and low-cost photovoltaic devices, transferable semiconductor structures, (opto-)electronic devices and device components.
Abstract:
OCT apparatus includes an interferometer, having an input beam splitter and a 50/50 output splitter. The splitting ratio of the input splitter may be optimized depending on the source power of light source and on the mismatch of the balanced receiver. The input splitter is a plate beam-splitter to minimize the stray reflected light in the interferometer and allow sequential operation of the apparatus in the OCT or in the confocal regime. The switching between the two regimes may be at will, or synchronous with the en-face scanning which results in quasi-simultaneous OCT/confocal imaging or in alternatives frames, confocal and OCT. By using polarization sensitive elements, two channels are provided in each regime, OCT and confocal. The two confocal polarization sensitive channels may allow adjustments of compensators prior to OCT measurements or OCT imaging.
Abstract:
An air valve for a paint gun comprising a closure member (40) configured for fitting in a valve chamber (44) of a paint gun, which valve chamber (44) intersects an air flow chamber (45) of the gun, the closure member (44) having two sealing points (46), (48) which, in use, when the valve is in its closed configuration, seal against an inner surface of the valve chamber (44) at opposing sides of the air flow chamber (45) thereby closing the airflow chamber (45), a conduit (49) passing through the closure member (40) providing fluid communication between the first and second sealing surfaces (46,48) and biasing means (41) for biasing the closure member (40) into the closed position when no external load is applied.
Abstract:
The present invention provides a process for forming electrical contacts to a molecular layer in a nanoscale device, the nanoscale device, and a method of manufacturing an integrated circuit comprise such devices. The process includes coating a surface of a stamp with a metal layer and forming an attached layer of anchored molecules by coupling first ends of the anchored molecules to a conductive or semiconductive substrate. The process also includes placing the metal layer in contact with the attached layer of anchored molecules such that the metal layer chemically bonds to free ends of the anchored molecules. The resulting devices produced have superior reliability as compared to conventional prepared devices.
Abstract:
Currently tuner circuits maintain normal power consumption while they are receiving RF signals and do not have provisions therein for disabling portions of their circuitry for reducing of power consumption. For example, during changing of channels, portions of the tuner are not used while the tuner is waiting for channel data. Thus, disabling portions of the circuit while the tuner is waiting for data serves to reduce power consumption of the tuner. Furthermore, tuner power consumption is reduced by determining whether a signal input to the tuner circuit requires amplification or not, or whether linearity in the amplifier can be sacrificed by a reduction in amplifier gain. Thus, a tuner circuit is provided that has control loop circuitry to execute control loops for controlling the gain and linearity of the tuner, as well as power consumption of circuitry therein.
Abstract:
The present invention provides a high yield pathway for the fabrication, transfer and assembly of high quality printable semiconductor elements having selected physical dimensions, shapes, compositions and spatial orientations. The compositions and methods of the present invention provide high precision registered transfer and integration of arrays of microsized and/or nanosized semiconductor structures onto substrates, including large area substrates and/or flexible substrates. In addition, the present invention provides methods of making printable semiconductor elements from low cost bulk materials, such as bulk silicon wafers, and smart-materials processing strategies that enable a versatile and commercially attractive printing-based fabrication platform for making a broad range of functional semiconductor devices.
Abstract:
The present invention provides methods and devices for fabricating 3D structures and patterns of 3D structures on substrate surfaces, including symmetrical and asymmetrical patterns of 3D structures. Methods of the present invention provide a means of fabricating 3D structures having accurately selected physical dimensions, including lateral and vertical dimensions ranging from 10 s of nanometers to 1000 s of nanometers. In one aspect, methods are provided using a mask element comprising a conformable, elastomeric phase mask capable of establishing conformal contact with a radiation sensitive material undergoing photoprocessing. In another aspect, the temporal and/or spatial coherence of electromagnetic radiation using for photoprocessing is selected to fabricate complex structures having nanoscale features that do not extend entirely through the thickness of the structure fabricated.
Abstract:
Performance parameters for a reciprocating pump including pulsation energy, temperature energy, solids, Miller number and chemical energy and the like are monitored and employed to at least periodically compute a total energy number over the operating life of the pump. The current computed value is compared to a predictive failure value empirically determined for the respective pump design, to determine when failure is likely to be imminent. Scheduling of maintenance with other pumping operations and objective rating of competing designs is possible based on the total energy number.
Abstract:
The present invention relates to Gonadotropin Releasing Hormone (GnRH, also known as Luteinizing Hormone Releasing Hormone) receptor antagonists.
Abstract:
The present invention provides methods, devices and device components for fabricating patterns on substrate surfaces, particularly patterns comprising structures having microsized and/or nanosized features of selected lengths in one, two or three dimensions. The present invention provides composite patterning devices comprising a plurality of polymer layers each having selected mechanical properties, such as Young's Modulus and flexural rigidity, selected physical dimensions, such as thickness, surface area and relief pattern dimensions, and selected thermal properties, such as coefficients of thermal expansion, to provide high resolution patterning on a variety of substrate surfaces and surface morphologies.