Abstract:
The present invention provides systems for cell separation based on cell rolling on surfaces along edges of regions coated with cell adhesion molecules. A variety of designs of coated regions and edges are disclosed.
Abstract:
A new class of poly(beta-amino alcohols) (PBAAs) has been prepared using combinatorial polymerization. The inventive PBAAs may be used in biotechnology and biomedical applications as coatings (such as coatings of films or multilayer films for medical devices or implants), additives, materials, excipients, non-biofouling agents, micropatterning agents, and cellular encapsulation agents. When used as surface coatings, these PBAAs elicited different levels of inflammation, both in vitro and in vivo, depending on their chemical structures. The large chemical diversity of this class of materials allowed us to identify polymer coatings that inhibit macrophage activation in vitro. Furthermore, these coatings reduce the recruitment of inflammatory cells, and reduce fibrosis, following the subcutaneous implantation of carboxylated polystyrene microparticles. These polymers may be used to form polyelectrolyte complex capsules for cell encapsulation. The invention may also have many other biological applications such as antimicrobial coatings, DNA or siRNA delivery, and stem cell tissue engineering.
Abstract:
Nitrogen-containing lipids prepared from the conjugate addition of amines to acrylates, acrylamides, or other carbon-carbon double bonds conjugated to electron-withdrawing groups are described. Methods of preparing these lipids from commercially available starting materials are also provided. These amine-containing lipids or salts forms of these lipids are preferably biodegradable and biocompatible and may be used in a variety of drug delivery systems. Given the amino moiety of these lipids, they are particularly suited for the delivery of polynucleotides. Complexes or nanoparticles containing the inventive lipid and polynucleotide have been prepared. The inventive lipids may also be used to in preparing microparticle for drug delivery. They are particularly useful in delivering labile agents given their ability to buffer the pH of their surroundings.
Abstract:
Described herein are compounds and compositions characterized, in certain embodiments, by conjugation of various groups, such as lipophilic groups, to an amino or amide group of an amino acid, a linear or cyclic peptide, a linear or cyclic polypeptide, or structural isomer thereof, to provide compounds of the present invention, collectively referred to herein as “APPLs”. Such APPLs are deemed useful for a variety of applications, such as, for example, improved nucleotide delivery. Exemplary APPLs include, but are not limited to, compounds of Formula (I), (II), (III), (IV), (V), and (VI), and salts thereof, as described herein: wherein m, n, p, R′, R1, R2, R3, R4, R5, R8, Z, W, Y, and Z are as defined herein.
Abstract:
Provided herein are compounds of Formula (I), and salts thereof, wherein each instance of RL is independently optionally substituted C6-C40 alkenyl. Further provided are compositions comprising a compound of Formula (I) and an agent. Further provided are methods and kits using the compositions for delivering an agent to a subject or cell and for treating and/or preventing a range of diseases. Further provided are methods of preparing compounds of Formula (I) and precursors thereof.
Abstract:
Aminoalcohol lipidoids are prepared by reacting an amine with an epoxide-terminated compound are described. Methods of preparing aminoalcohol lipidoids from commercially available starting materials are also provided. Aminoalcohol lipidoids may be prepared from racemic or stereochemically pure epoxides. Aminoalcohol lipidoids or salts forms thereof are preferably biodegradable and biocompatible and may be used in a variety of drug delivery systems. Given the amino moiety of these aminoalcohol lipidoid compounds, they are particularly suited for the delivery of polynucleotides. Complexes, micelles, liposomes or particles containing the inventive lipidoids and polynucleotide have been prepared. The inventive lipidoids may also be used in preparing microparticles for drug delivery. They are particularly useful in delivering labile agents given their ability to buffer the pH of their surroundings.
Abstract:
The present invention provides inventive conjugated polyethyleneimine (PEI) polymers and conjugated aza-macrocycles (collectively referred to herein as “conjugated lipomers” or “lipomers”) containing one or more groups of the formula (iii): wherein R3 and R4 are as defined herein. Also provided are compositions comprising the inventive conjugated lipomers, and methods of preparation and use.
Abstract:
Aminoalcohol lipidoids are prepared by reacting an amine with an epoxide-terminated compound are described. Methods of preparing aminoalcohol lipidoids from commercially available starting materials are also provided. Aminoalcohol lipidoids may be prepared from racemic or stereochemically pure epoxides. Aminoalcohol lipidoids or salts forms thereof are preferably biodegradable and biocompatible and may be used in a variety of drug delivery systems. Given the amino moiety of these aminoalcohol lipidoid compounds, they are particularly suited for the delivery of polynucleotides. Complexes, micelles, liposomes or particles containing the inventive lipidoids and polynucleotide have been prepared. The inventive lipidoids may also be used in preparing microparticles for drug delivery. They are particularly useful in delivering labile agents given their ability to buffer the pH of their surroundings.
Abstract:
Described herein are compounds and compositions characterized, in certain embodiments, by conjugation of various groups, such as lipophilic groups, to an amino or amide group of an amino acid, a linear or cyclic peptide, a linear or cyclic polypeptide, or structural isomer thereof, to provide compounds of the present invention, collectively referred to herein as “APPLs”. Such APPLs are deemed useful for a variety of applications, such as, for example, improved nucleotide delivery. Exemplary APPLs include, but are not limited to, compounds of Formula (I), (II), (III), (IV), (V), and (VI), and salts thereof, as described herein: wherein m, n, p, R′, R1, R2, R3, R4, R5, R8, Z, W, Y, and Z are as defined herein.
Abstract:
Aminoalcohol lipidoids are prepared by reacting an amine with an epoxide-terminated compound are described. Methods of preparing aminoalcohol lipidoids from commercially available starting materials are also provided. Aminoalcohol lipidoids may be prepared from racemic or stereochemically pure epoxides. Aminoalcohol lipidoids or salts forms thereof are preferably biodegradable and biocompatible and may be used in a variety of drug delivery systems. Given the amino moiety of these aminoalcohol lipidoid compounds, they are particularly suited for the delivery of polynucleotides. Complexes, micelles, liposomes or particles containing the inventive lipidoids and polynucleotide have been prepared. The inventive lipidoids may also be used in preparing microparticles for drug delivery. They are particularly useful in delivering labile agents given their ability to buffer the pH of their surroundings.