Abstract:
Disclosed are methods of for constructing a bead-displayed library of oligonucleotide probes (or sequence-modified capture moieties such as protein-nucleic acid conjugates) by ligation of a capture probe, having an analyte-specific sequence, to an anchor probe that is attached, at its 5′-end, (or possibly at the 3′ end) to an encoded carrier such as a color-coded microparticle (“bead”). Such a library can also be constructed by elongation of an anchor probe, using a second probe as the elongation template, wherein the second probe has an anchor-specific subsequence and an analyte-specific subsequence.
Abstract:
Methods and algorithms for automated allele assignments within an integrated software environment are provided. These methods and algorithms offer a multiplicity of functionalities including: data management; system configuration including user authorization, training set analysis and probe masking; pattern analysis including string matching and probe flipping; and interactive redaction of data. The methods and algorithms further include methods of setting thresholds, refining thresholds, and probe masking of signals produced by probes which do not contribute significantly to discriminating among alleles.
Abstract:
A method and apparatus for the manipulation of colloidal particulates and biomolecules at the interface between an insulating electrode such as silicon oxide and an electrolyte solution. Light-controlled electrokinetic assembly of particles near surfaces relies on the combination of three functional elements: the AC electric field-induced assembly of planar aggregates; the patterning of the electrolyte/silicon oxide/silicon interface to exert spatial control over the assembly process; and the real-time control of the assembly process via external illumination. The present invention provides a set of fundamental operations enabling interactive control over the creation and placement of planar arrays of several types of particles and biomolecules and the manipulation of array shape and size. The present invention enables sample preparation and handling for diagnostic assays and biochemical analysis in an array format, and the functional integration of these operations. In addition, the present invention provides a procedure for the creation of material surfaces with desired properties and for the fabrication of surface-mounted optical components.
Abstract:
A method and apparatus for the manipulation of colloidal particulates and biomolecules at the interface between an insulating electrode such as silicon oxide and an electrolyte solution. Light-controlled electrokinetic assembly of particles near surfaces relics on the combination of three functional elements: the AC electric field-induced assembly of planar aggregates; the patterning of the electrolyte/silicon oxide/silicon interface to exert spatial control over the assembly process; and the real-time control of the assembly process via external illumination. The present invention provides a set of fundamental operations enabling interactive control over the creation and placement of planar arrays of several types of particles and biomolecules and the manipulation of array shape and size. The present invention enables sample preparation and handling for diagnostic assays and biochemical analysis in an array format, and the functional integration of these operations. In addition, the present invention provides a procedure for the creation of material surfaces with desired properties and for the fabrication of surface-mounted optical components.
Abstract:
Disclosed is number coding of pairs (“doublets”) or small sets (“multiplets”) of solid phase carriers which provides distinguishable subtypes of a given type of such carriers, where each carrier type is distinguishable on the basis of a different code. Such number coding is useful for augmenting a coding system, such as a color code, and thereby effectively multiplying the number of “colors” (distinguishable sub-types). It can be applied, for example, to determine whether a sample is homozygous or heterozygous at a number of different sites for one of two different alleles, where the same color code is applied for each of the two alleles, and the alleles with the same color code are distinguished by knowing how many carriers are associated with molecules which detect each different allele.
Abstract:
This invention provides high unit density arrays of microparticles and methods of assembling such arrays. The microparticles in the arrays may be functionalized with chemical or biological entities specific to a given target analyte. The high unit density arrays of this invention are formed on chips which may be combined to form multichip arrays according to the methods described herein. The chips and/or multichip arrays of this invention are useful for chemical and biological assays.
Abstract:
A method and apparatus for the manipulation of colloidal particles and biomolecules at the interface between an insulating electrode such as silicon oxide and an electrolyte solution. Light-controlled electrokinetic assembly of particles near surfaces relies on the combination of three functional elements: the AC electric field-induced assembly of planar aggregates; the patterning of the electrolyte/silicon oxide/silicon interface to exert spatial control over the assembly process; and the real-time control of the assembly process via external illumination. The present invention provides a set of fundamental operations enabling interactive control over the creation and placement of planar arrays of several types of particles and biomolecules and the manipulation of array shape and size. The present invention enables sample preparation and handling for diagnostic assays and biochemical analysis in an array format, and the functional integration of these operations. In addition, the present invention provides a procedure for the creation of material surfaces with desired properties and for the fabrication of surface-mounted optical components.
Abstract:
This invention provides compositions and methods for genetic testing of an organism and for correlating the results of the genetic testing with a unique marker that unambiguously identifies the organism. The markers may be internal markers, such as for example single nucleotide polymorphisms (SNPs), short tandem repeats (STRs), or other sites within a genomic locus. Alternatively, the markers may be external, such that they are separately added to the genetic sample before testing.
Abstract:
Disclosed are a method and an algorithm for genetic cross-matching based on the comparison of recipient and donor genotypes—and the underlying combinations of alleles and haplotypes. The method of the invention, rather than focusing on phenotype prediction, instead relies on a comparison of genetic variants identified in the recipient and available donors, whose information preferably will be compiled in a widely available donor registry, to maximize molecular compatibility. The genotypes can be matched based on the weighted clinical significance of a genotypic difference between donor and recipient, such that certain mismatches are more acceptable than others.
Abstract:
Systems and methods are provided the autocentering, autofocusing, acquiring, decoding, aligning, analyzing and exchanging among various parties, images, where the images are of arrays of signals associated with ligand-receptor interactions, and more particularly, ligand-receptor interactions where a multitude of receptors are associated with microparticles or microbeads. The beads are encoded to indicate the identity of the receptor attached, and therefore, an assay image and a decoding image are aligned to effect the decoding. The images or data extracted from such images can be exchanged between de-centralized assay locations and a centralized location where the data are analyzed to indicate assay results. Access to data can be restricted to authorized parties in possession of certain coding information, so as to preserve confidentiality.