摘要:
An apparatus and method for detecting defects on a specimen includes an illumination optical unit which obliquely projects a laser onto a region which is longer in one direction on a surface of a specimen than in a transverse direction, a table unit which mounts the specimen and which is movable, a detection optical unit which detects light from the specimen illuminated by the laser with an image sensor while the table is moving, and a signal processor. The signal processor processes a signal outputted from the image sensor of the detection optical unit and converted to a digital signal and extracts defects of the specimen by comparing the converted digital signal with a reference digital signal. A display unit displays information of defects extracted by the signal processor.
摘要:
Secondary electrons and back scattered electrons generated by irradiating a wafer to be inspected such as a semiconductor wafer with a charged particle beam are detected by a detector. A signal proportional to the number of detected electrons is generated, and an inspection image is formed on the basis of the signal. On the other hand, in consideration of a current value and irradiation energy of a charged particle beam, an electric field on the surface of the inspection wafer, emission efficiency of the secondary electrons and back scattered electrons, and the like, an electric resistance and an electric capacity are determined so as to coincide with those in the inspection image. In a state where a difference between a resistance value in a normal portion and a resistance value in a defective portion is sufficiently increased by using the charging generated by the irradiation of electron beams, an inspection is conducted to thereby detect a defect.
摘要:
A processing method for semiconductor devices in a semiconductor fabrication line includes processing a substrate in a first processing apparatus, transferring the substrate processed in the first processing apparatus to a detecting apparatus without removal of the substrate from the semiconductor fabrication line while continuing fabrication of the semiconductor devices, detecting foreign particle defects on the substrate transferred to the detecting apparatus, and determining a foreign particle generation condition of the processing apparatus based on a data from the detecting.
摘要:
Secondary electrons and back scattered electrons generated by irradiating a wafer to be inspected, such as a semiconductor wafer, with a charged particle beam are detected by a detector. A signal proportional to the number of detected electrons is generated, and an inspection image is formed on the basis of this signal. On the other hand, in consideration of a current value and irradiation energy of a charged particle beam, an electric field on the surface of the inspection wafer, emission efficiency of the secondary electrons and back scattered electrons, and the like, an electric resistance and an electric capacitance are determined so as to coincide with those in the inspection image. In a state where a difference between a resistance value in a normal portion and a resistance value in a defective portion is sufficiently increased by using the charging generated by the irradiation of electron beams, an inspection is thereby conducted to detect a defect.
摘要:
Electron beam is irradiated to a wafer in the midst of steps at predetermined intervals by a plurality of times under a condition in which a junction becomes rearward bias and a difference in characteristic of a time period of alleviating charge in the rearward bias is monitored. As a result, charge is alleviated at a location where junction leakage is caused in a time period shorter than that of a normal portion and therefore, a potential difference is produced between the normal portion and a failed portion and is observed in a potential contrast image as a difference in brightness. By consecutively repeating operation of acquiring the image, executing an image processing in real time and storing a position and brightness of the failed portion, the automatic inspection of a designated region can be executed. Information of image, brightness and distribution of the failed portion is preserved and outputted automatically after inspection.
摘要:
The present invention provides a defect inspecting apparatus and a defect inspection method for inspecting an object of inspection for a defect such as a foreign particle existing on the object wherein, by using a high-efficiency illumination optical system for radiating an illumination beam to the object of inspection from a direction to reduce the intensity of a scattered light generated by a pattern on the object of inspection, it is possible to decrease the intensity of the scattered light from the pattern which causes a variation of a signal and, in addition, by using a means for setting a detection threshold value based on a variation of a signal computed for each area in a chip on the object of inspection, the detection threshold value can be made small and, thus, the sensitivity as well as the throughput can be raised.
摘要:
Provided is a pattern defect inspecting apparatus wherein inspection performance is stabilized. The defect inspecting apparatus, which has a plurality of configuration units and inspects defects on the surface of a sample, is provided with a means for monitoring time-dependent changes and failures of some of or all of the configuration units, and a means for notifying the user of the results of the monitoring. Furthermore, a unit which can perform correction is provided with a correcting means, and also a means for replacing a failure component with a spare component which has been prepared in the device.
摘要:
This invention implements reduction in the amount of background-scattered light from a semiconductor wafer surface and highly sensitive inspection, without increasing the number of detectors. A surface inspection apparatus that detects defects on the surface of an object (semiconductor wafer surface) to be inspected, by irradiating the surface of the object with a beam of light such as laser light and detecting the light reflected or scattered from the surface; wherein a widely apertured lens with an optical Fourier transform function is disposed between the object to be inspected and a detector, a filter variable in position as well in aperture diameter is provided on a Fourier transform plane, and background-scattered light from the semiconductor wafer surface is effectively blocked, whereby only a signal from a defect such as a foreign substance is detected.
摘要:
An aspect of the invention provides a defect inspection apparatus being able to accurately inspect a micro foreign matter or defect at a high speed for an inspection target substrate in which a repetitive pattern and a non-repetitive pattern are mixed. In a foreign matter anti-adhesive means 180, a transparent plate 187 is placed on a placement table 34 through a frame 185. In the foreign matter anti-adhesive means 180, a shaft 181 which is rotatably supported by two columnar supports 184 fixed onto a base 186 is coupled to a motor 182 by a coupling 183. The shaft 181 is inserted into a part of a frame 185 between the two columnar supports 184 such that the frame 185 and the transparent plate 187 are turnable about the shaft 181. Therefore, the whole of the frame 185 is opened and closed in a Z-direction about the shaft 181, and a wafer 1 on the placement table 34 can be covered with the frame 185 and the transparent plate 187.
摘要:
A method and apparatus of inspecting a sample, in which the sample is inspected under a plurality of inspection conditions, and inspection data obtained by inspecting the sample under each of the plurality of inspection conditions and position information on the sample of the inspection date in correspondence with the respective inspection conditions, are stored. The inspection data for each of the plurality of inspection conditions is against each other by the use of the position information on the sample to determine a position to be inspected in detail, and an image of the sample at a position to be inspected in detail is obtained. The obtained image is classified, the inspection condition of the sample by the use of information of classification of the image is determined.