摘要:
Systems and apparatus are disclosed for adjusting the temperature of at least a portion of the surface of a reaction chamber during a film formation process to control film properties. More than one portion of the chamber surface may be temperature-modulated.
摘要:
Systems and methods are disclosed that include adjusting a pressure level of a sample gas in a testing chamber, for example, using a pressurized inert reference gas, and determining a composition of the adjusted sample gas. By adjusting the pressure level of the sample gas, the composition of the sample gas may be determined more accurately than otherwise possible. Numerous other aspects are disclosed.
摘要:
A method for forming a conformal group III/V layer on a silicon substrate and the resulting substrate with the group III/V layers formed thereon. The method includes removing the native oxide from the substrate, positioning a substrate within a processing chamber, heating the substrate to a first temperature, cooling the substrate to a second temperature, flowing a group III precursor into the processing chamber, maintaining the second temperature while flowing a group III precursor and a group V precursor into the processing chamber until a conformal layer is formed, heating the processing chamber to an annealing temperature, while stopping the flow of the group III precursor, and cooling the processing chamber to the second temperature. Deposition of the III/V layer may be made selective through the use of halide gas etching which preferentially etches dielectric regions.
摘要:
Methods for depositing germanium-containing layers on silicon-containing layers are provided herein. In some embodiments, a method may include depositing a first layer atop an upper surface of the silicon-containing layer, wherein the first layer comprises predominantly germanium (Ge) and further comprises a lattice adjustment element having a concentration selected to enhance electrical activity of dopant elements, wherein the dopant elements are disposed in at least one of the first layer or in an optional second layer deposited atop of the first layer, wherein the optional second layer, if present, comprises predominantly germanium (Ge). In some embodiments, the second layer is deposited atop the first layer. In some embodiments, the second layer comprises germanium (Ge) and dopant elements.
摘要:
A method and apparatus for forming heterojunction stressor layers is described. A germanium precursor and a metal precursor are provided to a chamber, and an epitaxial layer of germanium-metal alloy formed on the substrate. The metal precursor is typically a metal halide, which may be provided by subliming a solid metal halide or by contacting a pure metal with a halogen gas. The precursors may be provided through a showerhead or through a side entry point, and an exhaust system coupled to the chamber may be separately heated to manage condensation of exhaust components.
摘要:
Methods and apparatus are disclosed for the formation of vaporizing liquid precursor materials. The methods or apparatus can be used as part of a chemical vapor deposition apparatus or system, for example for forming films on substrates. The methods and apparatus involve providing a vessel for containing a liquid precursor and diffusing element having external cross-section dimensions substantially equal to the internal cross-sectional dimensions of the vessel.
摘要:
A system for monitoring a process inside a high temperature semiconductor process chamber by capturing images is disclosed. Images are captured through a borescope by a camera. The borescope is protected from high temperatures by a reflective sheath and an Infrared (IR) cur-off filter. Images can be viewed on a monitor and can be recorded by a video recording device. Images can also be processed by a machine vision system. The system can monitor the susceptor and a substrate on the susceptor and surrounding structures. Deviations from preferred geometries of the substrate and deviations from preferred positions of susceptor and the substrate can be detected. Actions based on the detections of deviations can be taken to improve the performance of the process. Illumination of a substrate by a laser for detecting deviations in substrate geometry and position is also disclosed.
摘要:
A system for processing a wafer is provided. Ultraviolet light radiates through a first amount of oxygen gas in an ozone generation chamber so that the first amount of oxygen gas is converted to a first amount of ozone gas. The first amount of ozone gas flows from the ozone generation chamber into a loadlock chamber and a wafer is exposed to the first amount of ozone gas. The ultraviolet light also radiates through a window and then through a second amount of oxygen gas in the loadlock chamber so that the second amount of unconverted gas is converted to a second amount of ozone gas. The wafer held by the wafer holder is also exposed to the second amount of ozone gas.
摘要:
A system for processing a wafer is provided. Ultraviolet light radiates through a first amount of oxygen gas in an ozone generation chamber so that the first amount of oxygen gas is converted to a first amount of ozone gas. The first amount of ozone gas flows from the ozone generation chamber into a loadlock chamber and a wafer is exposed to the first amount of ozone gas. The ultraviolet light also radiates through a window and then through a second amount of oxygen gas in the loadlock chamber so that the second amount of unconverted gas is converted to a second amount of ozone gas. The wafer held by the wafer holder is also exposed to the second amount of ozone gas.
摘要:
A method and apparatus for controlling the radial temperature gradients of a wafer and a susceptor while ramping the temperature of the wafer and susceptor using a first heat source that is primarily directed at a central portion of the wafer, a second heat source that is primarily directed at an outer portion of the wafer, a third heat source that is primarily directed at a central portion of the susceptor, and a fourth heat source that is primarily directed at an outer portion of the susceptor. Ramping of the wafer and susceptor temperature is accomplished by applying power to the first, second, third and fourth heat sources. During ramping, the ratio of the first and second heat source powers is varied as a function of the wafer temperature and the ratio of the third and fourth heat source powers is varied as a function of the susceptor temperature.