摘要:
A method for fabricating a field effect transistor device includes forming a gate stack on a substrate, forming a spacer on the substrate, adjacent to the gate stack, forming a first portion of an active region on the substrate, the first portion of the active region having a first facet surface adjacent to the gate stack, forming a second portion of the active region on a portion of the first portion of the active region, the second portion of the active region having a second facet surface adjacent to the gate stack, the first facet surface and the second facet surface partially defining a cavity adjacent to the gate stack.
摘要:
A method of forming a semiconductor device includes patterning a photoresist layer formed over a homogeneous semiconductor device layer to be etched; subjecting the semiconductor device to an implant process that selectively implants a sacrificial etch stop layer that is self-aligned in accordance with locations of features to be etched within the homogeneous semiconductor device layer, and at a desired depth for the features to be etched; etching a feature pattern defined by the patterned photoresist layer into the homogenous semiconductor device layer, stopping on the implanted sacrificial etch stop layer; and removing remaining portion of the implanted sacrificial etch stop layer prior to filling the etched feature pattern with a fill material.
摘要:
A method for fabrication of features of an integrated circuit and device thereof include patterning a first structure on a surface of a semiconductor device and forming spacers about a periphery of the first structure. An angled ion implantation is applied to the device such that the spacers have protected portions and unprotected portions from the angled ion implantation wherein the unprotected portions have an etch rate greater than an etch rate of the protected portions. The unprotected portions and the first structure are selectively removed with respect to the protected portions. A layer below the protected portions of the spacer is patterned to form integrated circuit features.
摘要:
A transistor is provided that includes a buried oxide layer above a substrate. A silicon layer is above the buried oxide layer. A gate stack is on the silicon layer, the gate stack including a high-k oxide layer on the silicon layer and a metal gate on the high-k oxide layer. A nitride liner is adjacent to the gate stack. An oxide liner is adjacent to the nitride liner. A set of faceted raised source/drain regions having a part including a portion of the silicon layer. The set of faceted raised source/drain regions also include a first faceted side portion and a second faceted side portion.
摘要:
In one exemplary embodiment of the invention, a method (e.g., to fabricate a semiconductor device having a borderless contact) including: forming a first gate structure on a substrate; depositing an interlevel dielectric over the first gate structure; planarizing the interlevel dielectric to expose a top surface of the first gate structure; removing at least a portion of the first gate structure; forming a second gate structure in place of the first gate structure; forming a contact area for the borderless contact by removing a portion of the interlevel dielectric; and forming the borderless contact by filling the contact area with a metal-containing material.
摘要:
A method for fabrication of features for an integrated circuit includes patterning a mandrel layer to include structures having at least one width on a surface of an integrated circuit device. Exposed sidewalls of the structures are reacted to integrally form a new compound in the sidewalls such that the new compound extends into the exposed sidewalls by a controlled amount to form pillars. One or more layers below the pillars are etched using the pillars as an etch mask to form features for an integrated circuit device.
摘要:
In one exemplary embodiment, a semiconductor structure including: a SOI substrate having of a top silicon layer overlying an insulation layer, the insulation layer overlies a bottom silicon layer; a capacitor disposed at least partially in the insulation layer; a device disposed at least partially on the top silicon layer, where the device is coupled to a doped portion of the top silicon layer; a backside strap of first epitaxially-deposited material, at least a first portion of the backside strap underlies the doped portion of the top silicon layer, the backside strap is coupled to the doped portion of the top silicon layer at a first end of the backside strap and to the capacitor at a second end of the backside strap; and second epitaxially-deposited material that at least partially overlies the doped portion of the top silicon layer, the second epitaxially-deposited material further at least partially overlies the first portion.
摘要:
A method includes forming isolation regions in a semiconductor substrate to define a first field effect transistor (FET) region, a second FET region, and a diode region, forming a first gate stack in the first FET region and a second gate stack in the second FET region, forming a layer of spacer material over the second FET region and the second gate stack, forming a first source region and a first drain region in the first FET region and a first diode layer in the diode region using a first epitaxial growth process, forming a hardmask layer over the first source region, the first drain region, the first gate stack and a portion of the first diode layer, and forming a second source region and a second drain region in the first FET region and a second diode layer on the first diode layer using a second epitaxial growth process.
摘要:
An FET device characterized as being an asymmetrical tunnel FET (TFET) is disclosed. The TFET includes a gate-stack, a channel region underneath the gate-stack, a first and a second junction adjoining the gate-stack and being capable for electrical continuity with the channel. The first junction and the second junction are of different conductivity types. The TFET also includes spacer formations in a manner that the spacer formation on one side of the gate-stack is thinner than on the other side.
摘要:
A method to achieve multiple threshold voltage (Vt) devices on the same semiconductor chip is disclosed. The method provides different threshold voltage devices using threshold voltage adjusting materials and a subsequent drive in anneal instead of directly doping the channel. As such, the method of the present disclosure avoids short channel penalties. Additionally, no ground plane/back gates are utilized in the present application thereby the method of the present disclosure can be easily integrated into current complementary metal oxide semiconductor (CMOS) processing technology.