摘要:
There is provided a semiconductor article together with a process for producing the same which article has a plurality of semiconductor single crystal regions comprising a semiconductor single crystal region of one electroconductive type and a semiconductor single crystal region of the opposite electroconductive type on the same insulator substrate. At least the semiconductor single crystal region of one electroconductive type being provided by forming a different material which is sufficiently greater in nucleation density than the material of the insulator substrate and sufficiently fine to the extent that only one single nucleus of the semiconductor material can grow and then permitting the semiconductor material to grow around the single nucleus formed as the center.
摘要:
This disclosure enables high-productivity fabrication of semiconductor-based separation layers (made of single layer or multi-layer porous semiconductors such as porous silicon, comprising single porosity or multi-porosity layers), optical reflectors (made of multi-layer/multi-porosity porous semiconductors such as porous silicon), formation of porous semiconductor (such as porous silicon) for anti-reflection coatings, passivation layers, and multi-junction, multi-band-gap solar cells (for instance, by forming a variable band gap porous silicon emitter on a crystalline silicon thin film or wafer-based solar cell). Other applications include fabrication of MEMS separation and sacrificial layers for die detachment and MEMS device fabrication, membrane formation and shallow trench isolation (STI) porous silicon (using porous silicon formation with an optimal porosity and its subsequent oxidation). Further the disclosure is applicable to the general fields of Photovoltaics, MEMS, including sensors and actuators, stand-alone, or integrated with integrated semiconductor microelectronics, semiconductor microelectronics chips and optoelectronics.
摘要:
This disclosure enables high-productivity controlled fabrication of uniform porous semiconductor layers (made of single layer or multi-layer porous semiconductors such as porous silicon, comprising single porosity or multi-porosity layers). Some applications include fabrication of MEMS separation and sacrificial layers for die detachment and MEMS device fabrication, membrane formation and shallow trench isolation (STI) porous silicon (using porous silicon formation with an optimal porosity and its subsequent oxidation). Further, this disclosure is applicable to the general fields of photovoltaics, MEMS, including sensors and actuators, stand-alone, or integrated with integrated semiconductor microelectronics, semiconductor microelectronics chips and optoelectronics.
摘要:
A method of manufacturing a semiconductor chip including an integrated circuit and a through-electrode penetrating a semiconductor layer includes the steps of preparing a first substrate including a release layer and a semiconductor layer formed on the release layer; forming an integrated circuit in the semiconductor layer; forming, in the semiconductor layer, a hole or groove having a depth that does not reach the release layer; filling the hole or the groove with an electrical conductor; bonding a second substrate to the semiconductor layer to form a bonded structure; separating the bonded structure at the release layer to prepare the second substrate to which the semiconductor layer is transferred; and removing at least a portion of the reverse surface side of the semiconductor layer exposed by the separation to expose the bottom of the electrical conductor.
摘要:
This disclosure enables high-productivity fabrication of porous semiconductor layers (made of single layer or multi-layer porous semiconductors such as porous silicon, comprising single porosity or multi-porosity layers). Some applications include fabrication of MEMS separation and sacrificial layers for die detachment and MEMS device fabrication, membrane formation and shallow trench isolation (STI) porous silicon (using porous silicon formation with an optimal porosity and its subsequent oxidation). Further, this disclosure is applicable to the general fields of photovoltaics, MEMS, including sensors and actuators, stand-alone, or integrated with integrated semiconductor microelectronics, semiconductor microelectronics chips and optoelectronics.
摘要:
High productivity thin film deposition methods and tools are provided wherein a thin film semiconductor material layer with a thickness in the range of less than 1 micron to 100 microns is deposited on a plurality of wafers in a reactor. The wafers are loaded on a batch susceptor and the batch susceptor is positioned in the reactor such that a tapered gas flow space is created between the susceptor and an interior wall of the reactor. Reactant gas is then directed into the tapered gas space and over each wafer thereby improving deposition uniformity across each wafer and from wafer to wafer.
摘要:
A method of manufacturing a semiconductor device includes the steps of forming a plurality of first integrated circuits on the surface side of a first semiconductor substrate; forming a plurality of second integrated circuits in a semiconductor layer that is formed on a release layer provided on a second semiconductor substrate; bonding the two semiconductor substrates so that electrically bonding portions are bonded to each other to form a bonded structure; separating the second semiconductor substrate from the bonded structure at the release layer to transfer, to the first semiconductor substrate, the semiconductor layer in which the plurality of second integrated circuits are formed; and dicing the first semiconductor substrate to obtain stacked chips each including the first integrated circuit and the second integrated circuit.
摘要:
Provided is a method for transferring, onto a second substrate, at least one of functional regions arranged and joined to a first separation layer that is disposed on a first substrate and that becomes separable by a treatment, in which regions on the second substrate where the functional regions are to be transferred have a second separation layer that becomes separable by a treatment. The method includes a step of joining the first substrate to the second substrate by bonding such that the functional regions contact the second separation layer; a step of separating the functional regions from the first substrate at the first separation layer; and a step of, before or after the step of separation, forming separation grooves penetrating through the second substrate and the second separation layer from a surface of the second substrate, the surface being opposite to a surface having the second separation layer thereon.
摘要:
A method includes forming a first layer containing silicon oxide on a first substrate, partially removing the first layer to form an exposure portion on the first substrate, depositing amorphous gallium nitride system compound semiconductor on the first substrate with the exposure portion, evaporating the semiconductor on the first layer to form cores of the semiconductor on the exposure portion of the first substrate, forming an epitaxial layer of the semiconductor on the first substrate, and removing the epitaxial layer of the semiconductor on the exposure portion on the first substrate to form a separating groove.
摘要:
A light-emitting unit having an arrayed light source comprises a substrate; an arrayed light source group containing the arrayed light source arranged in a first direction; a lens array for focusing the light emitted from light emitting elements constituting the arrayed light source; and a lens support having a cavity formed between arrayed light source group and the lens array; the lens support having a first hole for introducing a fluid into the cavity, and a second hole for discharging the introduced fluid in a second direction crossing the first direction.