Abstract:
A working sheath tube (1) is used when a renovating operation of a pump-discharge pipe (4) branched from a peripheral wall (33) of a tubular barrel (3) inserted into a tank (2) in which a fuel is retained. The working sheath tube has a bottomed tubular shape which can be inserted into the barrel, and has a working space thereinside. A insertion hole (15a) into which a closing member (7) for closing a pump-discharge pipe is inserted is provided on and penetrates a sheath tube peripheral wall (15). While the sheath tube is inserted into the barrel, the insertion hole faces an opening of the pump-discharge pipe.
Abstract:
Provided are zeolite catalysts that allow reactions to proceed at temperatures as low as possible when lower olefins are produced from hydrocarbon feedstocks with low boiling points such as light naphtha, make it possible to make propylene yield higher than ethylene yield in the production of lower olefins, and have long lifetime. The zeolite catalysts are used in the production of lower olefins from hydrocarbon feedstocks with low boiling points such as light naphtha. The zeolite catalysts are MFI-type crystalline aluminosilicates containing iron atoms and have molar ratios of iron atoms to total moles of iron atoms and aluminum atoms in the range from 0.4 to 0.7. The use of the zeolite catalysts make it possible to increase propylene yield, to lower reaction temperatures, and to extend catalyst lifetime.
Abstract:
In an air-cooled heat exchanger system, the stress in the pipe connecting the upstream main pipe of the upstream manifold and each heat exchanger is minimized by using a simple structure. The air-cooled heat exchanger system (1) comprises an upstream manifold (6) including a plurality of upstream branch pipes (18) extending therefrom, a heat exchanger (4) connected to the downstream end of each branch pipe, and including an inlet header (31) placed on a base frame in a moveable manner, an outlet header and a plurality of heat transfer tubes (34) connecting the two headers, and a connecting member (41, 75) connecting each adjacent pair of the inlet headers. The upstream manifold, the inlet headers and the connecting members have a similar thermal coefficient so that when the upstream manifold expands thermally, the corresponding thermal expansion of the inlet headers and the connecting members causes the inlet headers to move relative to the base frame by an amount corresponding to the thermal expansion of the upstream manifold.
Abstract:
A vinylpyridine resin that is hardly pulverized and thermally decomposed such that the degradation of the catalytic activity is suppressed while having a pore volume and a specific surface area to maintain a sufficient catalytic activity, and also a method of manufacturing the vinylpyridine resin are provided. The resin represents: a volume ratio of the pores having a diameter of 3 through 5 nm to all the pores of not less than 4% and not more than 60%; a total pore volume of not less than 0.15 cc/g and not more than 0.35 cc/g; and a specific surface area of not less than 20 m2/g and not more than 100 m2/g. The resin can be manufactured by using a poor solvent and not less than 50 wt % and not more than 90 wt % of a good solvent as porous agent.
Abstract:
A method for producing xylene from feedstock oil includes a cracking/reforming reaction step of bringing the feedstock oil into contact with a catalyst to produce monocyclic aromatic hydrocarbons; a separation/recovery step of separating and recovering, from a product obtained by the cracking/reforming reaction step, a fraction A containing monocyclic aromatic hydrocarbons having a 10 vol % distillation temperature of 75° C. or higher and a 90 vol % distillation temperature of 140° C. or lower, a xylene fraction containing xylene, and a fraction B containing monocyclic aromatic hydrocarbons having a 10 vol % distillation temperature of 145° C. or higher and a 90 vol % distillation temperature of 215° C. or lower; and a xylene conversion step of bringing a mixed fraction obtained by mixing the fractions A and B with each other into contact with a catalyst containing a solid acid to convert the mixed fraction into xylene.
Abstract:
An aldehyde adsorbent that can adsorb and remove aldehyde from a carboxylic acid-containing liquid is provided. The aldehyde adsorbent is an aldehyde adsorbent for adsorbing aldehyde in a carboxylic acid-containing liquid containing aldehyde, including a cation exchange resin ion-exchanged with a polyvalent amine in 1 to 99% by mol of the total exchange capacity.
Abstract:
By controlling an excessive rise in the temperature of the material gas that is introduced into the liquefaction unit following the compression by a compressor, the temperature of the material gas may be adjusted to the temperature level at the introduction point of the liquefaction unit. A system (1) for the liquefaction of natural gas, comprises a first expander (3) for expanding natural gas under pressure as material gas; a first cooling unit (10, 11, 12) for cooling the material gas; a distillation unit (15) for reducing or eliminating a heavy component in the material gas by distilling the material gas cooled by the first cooler; a first compressor (4) for receiving a top fraction of the material gas from which the heavy component was reduced or eliminated by the distillation unit; and a liquefaction unit (21) for liquefying a gas phase component separated from the compressed material gas compressed by the first compressor by exchanging heat with a refrigerant.
Abstract:
Provided are: a uniformly, highly dispersed metal catalyst including a catalyst carrier and a catalyst metal being loaded thereon dispersed throughout the carrier, the uniformly, highly dispersed metal catalyst having excellent performances with respect to catalytic activity, selectivity, life, etc.; and a method of producing the same. The uniformly, highly dispersed metal catalyst includes a catalyst carrier made of a metal oxide and a catalyst metal having catalytic activity, the catalyst metal being loaded on the catalyst carrier, in which the catalyst carrier is a sulfur-containing catalyst carrier having sulfur or a sulfur compound almost evenly distributed throughout the carrier and the catalyst metal is loaded on the sulfur-containing catalyst carrier in a substantially evenly dispersed manner over the entire carrier substantially according to the distribution of the sulfur or the sulfur compound.
Abstract:
To provide a method for predicting a deactivation phenomenon in a flue-gas desulfurization unit to prevent the occurrence of the deactivation phenomenon before it happens.There is provided a method for preventing the occurrence of a deactivation phenomenon in a flue-gas desulfurization unit that treats flue gas of a coal-fired boiler, the method includes calculating a deactivation potential as an index of the deactivation phenomenon based on alkaline components such as Na, Ca, Mg, and K contained in ash in the flue gas, and performing an operation management, such as adjustment of set value of a pH control system, on the flue-gas desulfurization unit depending on change of the deactivation potential.
Abstract:
Provided is a method of partially replacing a shell plate of a tower or a vessel, capable of partially replacing the shell plate of the tower or the vessel in a short construction period at low construction cost.The method of partially replacing a shell plate of a main distillation tower is a method for replacing a cylindrical shell plate portion 2 serving as one portion of the shell plate 1 of a main distillation tower, wherein two facing parts located in the circumferential direction of the cylindrical shell plate portion 2 to be replaced are partially cut off and removed, new partial shell plates 3 are respectively attached to openings 6 generated by the removal, and the removal and the attachment are repeated, so that the cylindrical shell plate portion 2 is replaced. The new partial shell plate 3 is obtained in a case where the cylindrical shell plate portion 2 is substantially equally split into a plurality of sections in the circumferential direction.