Abstract:
A method of forming a Micro-Electro-Mechanical System (MEMS) includes forming a lower electrode on a first insulator layer within a cavity of the MEMS. The method further includes forming an upper electrode over another insulator material on top of the lower electrode which is at least partially in contact with the lower electrode. The forming of the lower electrode and the upper electrode includes adjusting a metal volume of the lower electrode and the upper electrode to modify beam bending.
Abstract:
A method of forming a Micro-Electro-Mechanical System (MEMS) includes forming a lower electrode on a first insulator layer within a cavity of the MEMS. The method further includes forming an upper electrode over another insulator material on top of the lower electrode which is at least partially in contact with the lower electrode. The forming of the lower electrode and the upper electrode includes adjusting a metal volume of the lower electrode and the upper electrode to modify beam bending.
Abstract:
The present subject matter relates to systems and methods for arranging and controlling programmable combinations of tuning elements in which more than one form of switching technology is combined in a single array. Specifically, such an array can include one or more first switchable elements including a first switching technology (e.g., one or more solid-state-controlled devices) and one or more second switchable elements including a second switching technology that is different than the first switching technology (e.g., one or more micro-electro-mechanical capacitors). The one or more first switchable elements and the one or more second switchable elements can be configured, however, to deliver a combined variable reactance.
Abstract:
A method of forming at least one Micro-Electro-Mechanical System (MEMS) includes forming a beam structure and an electrode on an insulator layer, remote from the beam structure. The method further includes forming at least one sacrificial layer over the beam structure, and remote from the electrode. The method further includes forming a lid structure over the at least one sacrificial layer and the electrode. The method further includes providing simultaneously a vent hole through the lid structure to expose the sacrificial layer and to form a partial via over the electrode. The method further includes venting the sacrificial layer to form a cavity. The method further includes sealing the vent hole with material. The method further includes forming a final via in the lid structure to the electrode, through the partial via.
Abstract:
A device includes a base substrate (700) with a micro component (702) attached thereto. Suitably it is provided with routing elements (704) for conducting signals to and from the component (702). It also includes spacer members (706) which also can act as conducting structures for routing signals vertically. There is a capping structure (708) of a glass material, provided above the base substrate (700), bonded via the spacer members (706), preferably by eutectic bonding, wherein the capping structure (708) includes vias (710) including metal for providing electrical connection through the capping structure. The vias can be made by a stamping/pressing method entailing pressing needles under heating to soften the glass and applying pressure, to a predetermined depth in the glass. However, other methods are possible, e-g- drilling, etching, blasting.
Abstract:
A method of forming a Micro-Electro-Mechanical System (MEMS) includes forming a lower electrode on a first insulator layer within a cavity of the MEMS. The method further includes forming an upper electrode over another insulator material on top of the lower electrode which is at least partially in contact with the lower electrode. The forming of the lower electrode and the upper electrode includes adjusting a metal volume of the lower electrode and the upper electrode to modify beam bending.
Abstract:
A system and method for a micro-electrical-mechanical system (MEMS) device including a substrate and a free-standing and suspended electroplated metal MEMS structure formed on the substrate. The free-standing and suspended electroplated metal MEMS structure includes a metal mechanical element mechanically coupled to the substrate and a seed layer mechanically coupled to and in electrical communication with the mechanical element, the seed layer comprising at least one of a refractory metal and a refractory metal alloy, wherein a thickness of the mechanical element is substantially greater than a thickness of the seed layer such that the mechanical and electrical properties of the free-standing and suspended electroplated metal MEMS structure are defined by the material properties of the mechanical element.
Abstract:
A method of forming at least one Micro-Electro-Mechanical System (MEMS) includes patterning a wiring layer to form at least one fixed plate and forming a sacrificial material on the wiring layer. The method further includes forming an insulator layer of one or more films over the at least one fixed plate and exposed portions of an underlying substrate to prevent formation of a reaction product between the wiring layer and a sacrificial material. The method further includes forming at least one MEMS beam that is moveable over the at least one fixed plate. The method further includes venting or stripping of the sacrificial material to form at least a first cavity.
Abstract:
A method of forming at least one Micro-Electro-Mechanical System (MEMS) includes patterning a wiring layer to form at least one fixed plate and forming a sacrificial material on the wiring layer. The method further includes forming an insulator layer of one or more films over the at least one fixed plate and exposed portions of an underlying substrate to prevent formation of a reaction product between the wiring layer and a sacrificial material. The method further includes forming at least one MEMS beam that is moveable over the at least one fixed plate. The method further includes venting or stripping of the sacrificial material to form at least a first cavity.
Abstract:
A method of forming at least one Micro-Electro-Mechanical System (MEMS) includes forming a beam structure and an electrode on an insulator layer, remote from the beam structure. The method further includes forming at least one sacrificial layer over the beam structure, and remote from the electrode. The method further includes forming a lid structure over the at least one sacrificial layer and the electrode. The method further includes providing simultaneously a vent hole through the lid structure to expose the sacrificial layer and to form a partial via over the electrode. The method further includes venting the sacrificial layer to form a cavity. The method further includes sealing the vent hole with material. The method further includes forming a final via in the lid structure to the electrode, through the partial via.