摘要:
An electronic device may include a main system that can operate in a normal state and an energy-saving state, a data retaining unit that stores data, and a subsystem that may execute transmission and reception of data to and from an external apparatus. While the main system is in the energy-saving state, if the subsystem receives main dedicated specific data of pieces of main dedicated data required to be processed by the main system, the subsystem may store the main dedicated specific data. While the main system is in the energy-saving state, if the subsystem receives main dedicated data other than the main dedicated specific data from an external apparatus, the subsystem may transition the main system to the normal state and cause the main system to process the main dedicated specific data stored and the main dedicated data other than the main dedicated specific data.
摘要:
In one embodiment, the present invention includes a method for receiving an interrupt from an accelerator, sending a resume signal directly to a small core responsive to the interrupt and providing a subset of an execution state of the large core to the first small core, and determining whether the small core can handle a request associated with the interrupt, and performing an operation corresponding to the request in the small core if the determination is in the affirmative, and otherwise providing the large core execution state and the resume signal to the large core. Other embodiments are described and claimed.
摘要:
Dynamic power routing is utilized to route power from other components, which are transitioned to lower power consuming states, in order to accommodate more efficient processing of computational tasks by hardware accelerators, thereby staying within electrical power thresholds that would otherwise not have accommodated simultaneous full-power operation of the other components and such hardware accelerators. Once a portion of a workflow is being processed by hardware accelerators, the workflow, or the hardware accelerators, can be self-throttling to stay within power thresholds, or they can be throttled by independent coordinators, including device-centric and system-wide coordinators. Additionally, predictive mechanisms can be utilized to obtain available power in advance, by proactively transitioning other components to reduced power consuming states, or reactive mechanisms can be utilized to only transition components to reduced power consuming states when a specific need for increased hardware accelerator power is identified.
摘要:
Systems and methods related to wakeup circuits for electronic devices are disclosed. More particularly, an electronic device includes a component operable in at least a lower power state and a higher power state and a wakeup circuit configured to signal the component to transition from the lower power state to the higher power state upon declaration of a wakeup event. The wakeup circuit is configured to process a received input signal to synchronize with a clock; generate an activity signal that includes an activity pulse for each time the processed input signal changes state in different cycles of the clock; open a qualification window upon detection of a first activity pulse in the activity signal; and in the event more than a threshold number of activity pulses in the activity signal are detected prior to closing the qualification window, declare a wakeup event.
摘要:
System and method embodiments are provided for messaging-based System-on-a-chip (SoC) power gating. The embodiments enable fine granularity SoC power gating without introducing significant latency and substantially maximizes SoC power reduction. In an embodiment, a method in a first SoC resource for messaging-based power gating includes receiving at the first SoC resource a wakeup notification message (WNM) from a second SoC resource, wherein the WNM comprises a time at which a result message from the second SoC resource is expected to arrive at the first SoC resource; determining with the first SoC resource a wake-up time according to the time at which the result message from the second SoC resource is expected to arrive at the first SoC resource; setting a wake-up time timer to expire at the wake-up time; and waking up the first SoC resource when the wake-up time timer expires when the first SoC resource is asleep.
摘要:
Various embodiments of methods and systems for thermally aware scheduling of workloads in a portable computing device that contains a heterogeneous, multi-processor system on a chip (“SoC”) are disclosed. Because individual processing components in a heterogeneous, multi-processor SoC may exhibit different processing efficiencies at a given temperature, and because more than one of the processing components may be capable of processing a given block of code, thermally aware workload scheduling techniques that compare performance curves of the individual processing components at their measured operating temperatures can be leveraged to optimize quality of service (“QoS”) by allocating workloads in real time, or near real time, to the processing components best positioned to efficiently process the block of code.
摘要:
According to one embodiment, a memory system includes a non-volatile first storage unit, a second storage unit, a third storage unit, and a controller. The controller is configured to selectively execute, following transition to a first mode, either a procedure of writing data of the second storage unit in the third storage unit, or a procedure of writing data of the third storage unit in the first storage unit while reducing power feed to the first and third storage units.
摘要:
In embodiments of display co-processing, a computing device includes a display, a full-power processor, and a low-power processor that can alter visual content presented by the display without utilizing the full-power processor. The low-power processor can, responsive to a request from the full-power processor, generate additional display data to update display data stored in a frame-buffer of the display. The low-power processor can then transmit the additional display data to the frame-buffer effective to alter at least a portion of the visual content presented by the display. In some embodiments, the additional display data is transmitted via a protocol converter that forwards the display data to the display using a display-specific communication protocol.
摘要:
An apparatus and method for waking up a main processor (MP) in a low power or ultra-low power device preferably includes the MP, and a sub-processor (SP) that utilizes less power than the MP to monitor ambient conditions than the MP, and may be internalized in the MP. The MP and SP can remain in a sleep mode while an interrupt sensor monitors for changes in the ambient environment. A sensor is preferably an interrupt-type sensor, as opposed to polling-type sensors conventionally used to detect ambient changes. The MP and SP may remain in sleep mode, as a low-power or an ultra-low power interrupt sensor operates with the SP being in sleep mode, and awakens the SP via an interrupt indicating a detected change. The SP then wakes the MP after comparing data from the interrupt sensor with values in storage or with another sensor.
摘要:
A power control system and a power control method are provided. The power control system is adapted to a computer device. The computer device comprises an embedded controller and a power supply both coupled to each other. The power supply provides power to the embedded controller. The power control system comprises a device switch input terminal and a logic output terminal. The device switch input terminal receives a trigger signal from a component of the computer device to change a state of the computer system. The logic output terminal is coupled to the power supply and performs on-off control of the power supply to provide or stop power to the embedded controller when the switch input terminal receives the trigger signal.