摘要:
According to one embodiment, a photoelectric conversion element includes a first electrode, a second electrode, a photoelectric conversion layer and a first layer. The photoelectric conversion layer is provided between the first electrode and the second electrode. The first layer is provided between the first electrode and the photoelectric conversion layer. The first layer includes at least a first metal oxide. The first layer has a plurality of orientation planes. At least one of the orientation planes satisfies the relationship L1>L2, where L1 is a length of the one of the plurality of orientation planes, and L2 is a thickness of the first layer along a first direction. The first direction is from the first electrode toward the second electrode.
摘要:
A method for processing a perovskite photoactive layer. The method comprises depositing a lead salt precursor onto a substrate to form a lead salt thin film, depositing a second salt precursor onto the lead salt thin film, annealing the substrate to form a perovskite material.
摘要:
An optical detector (110) is disclosed. The optical detector (110) comprises: —an optical sensor (112), having a substrate (116) and at least one photosensitive layer setup (118) disposed thereon, the photosensitive layer setup (118) having at least one first electrode (120), at least one second electrode (130) and at least one photovoltaic material (140) sandwiched in between the first electrode (120) and the second electrode (130), wherein the photovoltaic material (140) comprises at least one organic material, wherein the first electrode (120) comprises a plurality of first electrode stripes (124) and wherein the second electrode (130) comprises a plurality of second electrode stripes (134), wherein the first electrode stripes (124) and the second electrode stripes (134) intersect such that a matrix (142) of pixels (144) is formed at intersections of the first electrode stripes (124) and the second electrode stripes (134); and —at least one readout device (114), the readout device (114) comprising a plurality of electrical measurement devices (154) being connected to the second electrode stripes (134) and a switching device (160) for subsequently connecting the first electrode stripes (124) to the electrical measurement devices (154).
摘要:
Photovoltaic devices such as solar cells, hybrid solar cell-batteries, and other such devices may include an active layer disposed between two electrodes. The active layer may have perovskite material and other material such as mesoporous material, interfacial layers, thin-coat interfacial layers, and combinations thereof. The perovskite material may be photoactive. The perovskite material may be disposed between two or more other materials in the photovoltaic device. Inclusion of these materials in various arrangements within an active layer of a photovoltaic device may improve device performance. Other materials may be included to further improve device performance, such as, for example: additional perovskites, and additional interfacial layers.
摘要:
The present invention relates to a method for the production of a thin-film solar cell array in which a plurality of individual thin-film solar cells are applied on a substrate. The individual thin-film solar cells are thereby deposited one above the other in regions so that an overlapping region is produced from respectively one pair of two individual thin-film solar cells; in this region, a series connection of the two thin-film solar cells forming the pair is present. In addition, the thin-film solar cell array has a transition region in which the thin-film solar cell applied on the first solar cell is converted into a layer situated below.
摘要:
A transparent electrode can include a graphene sheet on a substrate, a layer including a conductive polymer disposed over the graphene sheet, and a plurality of semiconducting nanowires, such as ZnO nanowires, disposed over the layer including the conductive polymer.
摘要:
An electromagnetic wave detector that detects incident light by converting the incident light into an electric signal includes a flat metal layer formed on a supporting substrate, an intermediate layer formed on the metal layer, a graphene layer formed on the intermediate layer, isolated metals periodically formed on the graphene layer, and electrodes arranged oppositely on both sides of the isolated metals. Depending on a size of a planar shape of each of the isolated metals, light having a predetermined wavelength at which surface plasmon occurs is determined out of the incident light, and the light having the predetermined wavelength is absorbed to detect a change in the electric signal generated in the graphene layer.
摘要:
A radiation detector (10) which has a multilayer structure that includes: a first electrode (34); a second electrode (49) that is disposed so as to face the first electrode; a selenium layer (48) that is disposed between the first electrode and the second electrode and contains amorphous selenium; a first blocking organic layer (38) that is adjacent to the selenium layer, between the first electrode and the selenium layer, and that contains a hole transport material having an electron affinity of 3.7 eV or less; and a second blocking organic layer (37) that is adjacent to the selenium layer, between the second electrode and the selenium layer, and that contains an electron transport material having an ionization potential of 5.9 eV or more. This radiation detector (10) has low dark current, excellent durability, and less afterimages.
摘要:
The invention provides an optoelectronic device comprising a porous material, which porous material comprises a semiconductor comprising a perovskite. The porous material may comprise a porous perovskite. Thus, the porous material may be a perovskite material which is itself porous. Additionally or alternatively, the porous material may comprise a porous dielectric scaffold material, such as alumina, and a coating disposed on a surface thereof, which coating comprises the semiconductor comprising the perovskite. Thus, in some embodiments the porosity arises from the dielectric scaffold rather than from the perovskite itself. The porous material is usually infiltrated by a charge transporting material such as a hole conductor, a liquid electrolyte, or an electron conductor. The invention further provides the use of the porous material as a semiconductor in an optoelectronic device. Further provided is the use of the porous material as a photosensitizing, semiconducting material in an optoelectronic device. The invention additionally provides the use of a layer comprising the porous material as a photoactive layer in an optoelectronic device. Further provided is a photoactive layer for an optoelectronic device, which photoactive layer comprises the porous material.
摘要:
The invention provides an optoelectronic device comprising: (i) a porous dielectric scaffold material; and (ii) a semiconductor having a band gap of less than or equal to 3.0 eV, in contact with the scaffold material. Typically the semiconductor, which may be a perovskite, is disposed on the surface of the porous dielectric scaffold material, so that it is supported on the surfaces of pores within the scaffold. In one embodiment, the optoelectronic device is an optoelectronic device which comprises a photoactive layer, wherein the photoactive layer comprises: (a) said porous dielectric scaffold material; (b) said semiconductor; and (c) a charge transporting material. The invention further provides the use, as a photoactive material in an optoelectronic device, of: (i) a porous dielectric scaffold material; and (ii) a semiconductor having a band gap of less than or equal to 3.0 eV, in contact with the scaffold material. Further provided is the use of a layer comprising: (i) a porous dielectric scaffold material; and (ii) a semiconductor having a band gap of less than or equal to 3.0 eV, in contact with the scaffold material; as a photoactive layer in an optoelectronic device. In another aspect, the invention provides a photoactive layer for an optoelectronic device comprising (a) a porous dielectric scaffold material; (b) a semiconductor having a band gap of less than or equal to 3.0 eV, in contact with the scaffold material; and (c) a charge transporting material.