Abstract:
An operation state estimation apparatus configured to estimate an operation state of an energy storage device includes a history acquirer configured to acquire a charge-discharge history of the energy storage device during a predetermined period, and a pattern data generator configured to generate pattern data in accordance with the acquired charge-discharge history, the pattern data being obtained by patterning data indicating repetitive variation out of data indicating variation in state quantity of the energy storage device during the predetermined period. An operation state estimation method of estimating an operation state of an energy storage device executed by a computer includes a history acquisition step of acquiring a charge-discharge history of the energy storage device during a predetermined period, and a pattern data generation step of generating pattern data in accordance with the acquired charge-discharge history.
Abstract:
A post-deterioration performance estimating apparatus estimates a post-deterioration performance value indicating performance of an energy storage device at a predetermined deterioration point, wherein discharge capacity of the energy storage device discharging at a predetermined first current is referred to as energy storage capacity, discharge capacity of the energy storage device discharging at a second current of a current value smaller than that of the first current is referred to as small current discharge capacity, a relational expression on relation among initial capacity of the energy storage device, a first capacity decreased amount obtained by subtracting the small current discharge capacity from the initial capacity, a second capacity decreased amount obtained by subtracting the energy storage capacity from the small current discharge capacity, and a cumulative operating period as a cumulative value of operating periods of the energy storage device is referred to as a first relational expression, and the post-deterioration performance estimating apparatus includes a post-deterioration performance estimator configured to estimate the post-deterioration performance value at the deterioration point in accordance with the first relational expression and the cumulative operating period at the deterioration point.
Abstract:
According to an embodiment, an electric storage apparatus includes an electric storage device; an insulating member arranged in alignment with the electric storage device; and a sandwiching member made of metal configured to sandwich the insulating member with the electric storage device, wherein one of the insulating member and the sandwiching member includes a recess having an opening on a first surface and having a recess-side large-diameter portion, on the bottom side, with an inner circumference larger than the opening, and the other of the insulating member and the sandwiching member includes a projection-side large-diameter portion, on the distal end side, with an outer circumference larger than the opening, the projection-side large-diameter portion being arranged inside the recess-side large-diameter portion.
Abstract:
A switch failure detector, configured to be installed in an electric system including an electric storage device, includes at least one electronic switch connected in a path in which a charging current to the electric storage device and a discharging current from the electric storage device flow, at least one rectifier for passing a discharging current by bypassing the electronic switch when the electronic switch is turned off, and a controller for sending an on-command signal to the at least one electronic switch to turn on the electronic switch, and determining whether a switch failure detection process is executable based on a voltage of the electric storage device.
Abstract:
A performance deterioration detecting apparatus detects an initial state of sudden deterioration in performance of an energy storage device as a performance deterioration start state, and includes: a first acquiring unit configured to acquire a first maximum variation amount as a maximum value of a capacity variation amount that is a degree of variation in current carrying capacity relative to variation in voltage of the charged or discharged energy storage device, regarding a capacity-voltage property at a first time point, indicating relation between the capacity variation amount and the voltage; a second acquiring unit configured to acquire a second maximum variation amount as a maximum value of the capacity variation amount regarding the capacity-voltage property at a second time point after the first time point; and a performance deterioration determiner configured to determine that the energy storage device is in the performance deterioration start state at the second time point if a variation amount ratio as a ratio of the second maximum variation amount to the first maximum variation amount exceeds a predetermined value.
Abstract:
An energy storage device includes a positive electrode and a negative electrode. The negative electrode includes graphite and non-graphitizable carbon, and a D50 particle size of the graphite at which a cumulative volume in a particle size distribution of a particle size reaches 50% is 2 μm or more. A ratio of a mass of the non-graphitizable carbon to a total amount of a mass of the graphite and a mass of the non-graphitizable carbon is 5% by mass or more and 45% by mass or less and a ratio of the D50 particle size of the graphite to a D50 particle size of the non-graphitizable carbon is 1.02 or less.
Abstract:
An electric storage device includes an electrode assembly, a case that includes a defining wall and houses the electrode assembly, a sealing member that is arranged on the defining wall, and a conductive member that is electrically connected to the electrode assembly, the conductive member being supported by the sealing member. At least a portion of the defining wall where the sealing member is arranged includes an aluminum-based metallic material. The sealing member includes a material that is softer than the material for the at least a portion of the defining wall where the sealing member is arranged. The sealing member includes polyphenylene sulfide (PPS) resin and an elastomer. The elastomer is contained in an amount of 2% to 20% by weight. The conductive member is crimped in such a manner that the sealing member is pressed against the defining wall.
Abstract:
An electric storage device includes a case having a cuboid shape and including a terminal surface having an electrode terminal, a bottom surface opposite to the terminal surface, a long side surface, and a short side surface. The device also includes an electric storage element formed by winding positive and negative plates being laminated via a separator, the electric storage element being housed in the case and being away from an inner surface of the long side surface, the electric storage element being in electrical connection with the electrode terminal, and a heat transfer member in contact with an outer surface of the long side surface.
Abstract:
A metal foil extending outward from an electrode plate is sandwiched between a first metal member and a second metal member, and ultrasonic vibration is caused to act upon a plurality of sites of action from the first metal member side to join the metal foil to the first metal member and the second metal member. The first metal member has a Vickers hardness of at least 40 Hv and not more than 75 Hv.