Abstract:
An instrumentation amplifier includes first and second resistors for gain setting. The operational amplifiers within the instrumentation amplifier include selectively enabled current drive sources coupled to the amplifier output. The first and second resistors have variable resistances. A control circuit is configured to select the variable resistances of the first and second resistors to implement a fixed gain for the instrumentation amplifier and further selectively enable the current drive sources. The control circuit receives an indication of a downstream programmable gain (for example, from a downstream programmable gain amplifier). The variable resistances of the first and second resistors are selected to be scaled inversely with respect to the downstream programmable gain and the current drive sources are enabled proportionately with respect to the downstream programmable gain.
Abstract:
Methods and systems are described for enabling the operation of a stereoscopic viewing device such that the viewing device provides a movable viewing window that enables the 3D rendering of 3D image data displayed by a backlit LCD device. In a particular implementation, the systems and methods disclosed herein are operable to control the operation of a pair of LCD shutter glasses.
Abstract:
Trenches are formed through a top semiconductor layer and a buried insulator layer of a semiconductor-on-insulator (SOI) substrate. A selective epitaxy is performed to form bulk semiconductor portions filling the trenches and in epitaxial alignment with the semiconductor material of a handle substrate. At least one dielectric layer is deposited over the top semiconductor layer and the bulk semiconductor portions, and is patterned to form openings over selected areas of the top semiconductor layer and the bulk semiconductor portions. A semiconductor alloy material is deposited within the openings directly on physically exposed surfaces of the top semiconductor layer and the bulk semiconductor portions. The semiconductor alloy material intermixes with the underlying semiconductor materials in a subsequent anneal. Within each of the SOI region and the bulk region, two types of semiconductor material portions are formed depending on whether a semiconductor material intermixes with the semiconductor alloy material.
Abstract:
Silicon germanium regions are formed adjacent gates electrodes over both n-type and p-type regions in an integrated circuit. A hard mask patterned by lithography then protects structures over the p-type region while the silicon germanium is selectively removed from over the n-type region, even under remnants of the hard mask on sidewall spacers on the gate electrode. Silicon germanium carbon is epitaxially grown adjacent the gate electrode in place of the removed silicon germanium, and source/drain extension implants are performed prior to removal of the remaining hard mask over the p-type region structures.
Abstract:
A method for making a semiconductor device may include forming, above a substrate, a stack of alternating layers of first and second semiconductor materials. The second semiconductor material may be different than the first semiconductor material. The method may further include forming fins from the stack, with each fin having alternating layers of the first and second semiconductor materials, and selectively removing sidewall portions of the second semiconductor material from the fins to define recesses therein. The method may also include forming a dielectric material within the recesses, forming additional first semiconductor material on sidewall portions of the first semiconductor material in the fins, and forming a dielectric layer overlying the fins to define nanowires including the first semiconductor material within the dielectric layer.
Abstract:
A drying apparatus for drying a semiconductor wafer includes a processing chamber including a rinsing section and a drying section adjacent thereto. The rinsing section has a chamber loading slot associated therewith for receiving the semiconductor wafer. The drying section has a chamber unloading slot associated therewith for outputting the semiconductor wafer. An exhaust control cap is carried by the processing chamber and includes a bottom wall, a top wall, at least one intermediate wall between the bottom and top walls, and a side wall coupled to the top, bottom and the at least one intermediate wall to define stacked exhaust sections. The exhaust control cap has a cap loading slot aligned with the chamber loading slot, a cap unloading slot aligned with the chamber unloading slot, and at least one exhaust port configured to be coupled to a vacuum source.
Abstract:
A method for manufacturing a microelectronic device with transistors of different types having raised source and drain regions and different overlap regions.
Abstract:
Methods and structures for forming uniaxially-strained, nanoscale, semiconductor bars from a biaxially-strained semiconductor layer are described. A spatially-doubled mandrel process may be used to form a mask for patterning dense, narrow trenches through the biaxially-strained semiconductor layer. The resulting slicing of the biaxially-strained layer enhances carrier mobility and can increase device performance.
Abstract:
An instrumentation amplifier includes first and second resistors for gain setting. The operational amplifiers within the instrumentation amplifier include selectively enabled current drive sources coupled to the amplifier output. The first and second resistors have variable resistances. A control circuit is configured to select the variable resistances of the first and second resistors to implement a fixed gain for the instrumentation amplifier and further selectively enable the current drive sources. The control circuit receives an indication of a downstream programmable gain (for example, from a downstream programmable gain amplifier). The variable resistances of the first and second resistors are selected to be scaled inversely with respect to the downstream programmable gain and the current drive sources are enabled proportionately with respect to the downstream programmable gain.
Abstract:
A photonic integrated circuit includes optical circuitry fabricated over an underlying circuitry layer. The optical circuitry includes a dielectric material having recesses disposed within, layers of a light waveguide material deposited within the recesses, and lenses disposed over each layer of waveguide material. The underlying circuitry layer may include, for example, a semiconductor wafer as well as circuitry fabricated during front end of line (FEOL) semiconductor manufacturing such as, for example, sources, gates, drains, interconnects, contacts, resistors, and other circuitry that may be manufactured during FEOL processes. The underlying circuitry layer may also include circuitry manufactured during back end of line semiconductor manufacturing processes such as, for example, interconnect structures, metallization layers, and contacts.