Abstract:
An apparatus may include a transceiver operable to receive a downlink message from a base station for a serving cell, the downlink message allocating a set of control parameters. The apparatus may also include a processor circuit communicatively coupled to the transceiver and an uplink power control module operable on the processor circuit to read the set of control parameters, and apply a signal-to-noise-and-interference (SINR) parameter based on the received set of control parameters to determine physical uplink shared channel (PUSCH) power to be applied for a PUSCH transmission. Other embodiments are disclosed and claimed.
Abstract:
Disclosed embodiments may include an apparatus having one or more processors coupled to one or more computer-readable storage media. The one or more processors may be configured to transmit and/or receive channel state information reference signal (CSI-RS) resource configuration information, demodulation reference signals (DM-RS), uplink sounding reference signals (SRS), and power control parameters to support uplink coordinated multi-point (CoMP) operations. Other embodiments may be disclosed.
Abstract:
Briefly, in accordance with one or more embodiments, user equipment receives unicast services from a first carrier of a primary serving cell and determines if Multimedia Broadcast and Multicast services (MBMS) services are available on a second carrier based at least in part on information in a broadcast carrier channel that indicates the second carrier or an identification (ID) of the second carrier. If MBMS services are available on the second carrier, the user equipment at least temporarily switches to the second carrier to receive the MBMS services. The user equipment may provide feedback to the network or the primary serving cell when it starts and stops receiving MBMS services, and then may switch back to the primary serving cell when MBMS services have ended or the user equipment no longer desires to receive MBMS services.
Abstract:
Embodiments of a system and methods for advanced multi-cell coordinated operations are generally described herein. Other embodiments may be described and claimed.
Abstract:
Embodiments of the present disclosure describe devices, methods, computer-readable media, and systems configurations for configuration of downlink coordinated multipoint (CoMP) communications in a wireless communication network. A user equipment (UE) may receive, from an evolved Node B (eNB), a radio resource control (RRC) transmission including channel state informations (CSI) reference signal (RS) parameters for a plurality of transmission points. The UE may subsequently receive a medium access control (MAC) control element (CE) including a plurality of index bits corresponding to one or more activated transmission points of the plurality of transmission points for which the feedback module is to generate CSI-RS feedback. The eNB may dynamically update the transmission points that are activated for CSI-RS feedback. The UE may receive another MAC CE from the eNB to notify the UE of the updated set of activated transmission points.
Abstract:
Embodiments of a system and methods for improving radio link reliability using multi-carrier capability in wireless systems are generally described herein. Other embodiments may be described and claimed.
Abstract:
The various inventive embodiments relate to arrangement of information elements (IEs) for persistent and/or dynamic allocations in a wireless broadband network and include optimization techniques to eliminate the repetitive information fields from the downlink (DL)-Persistent-IEs, uplink (UL)-Persistent-IEs, DL-IEs, and UL-IEs. Elimination of repetitive information fields reduces MAP overhead. In addition embodiments relate to methods to use the same hybrid automatic repeat request (HARQ) region to contain persistent as well as non-persistent allocations. The use of the same HARQ region for persistent as well as non-persistent allocations further reduces the MAP overhead as it requires a single header to define the HARQ region instead of the two headers that are required to define two different HARQ regions: one for persistent allocation and the second one for non-persistent allocations.
Abstract:
Technology for periodic channel state information (CSI) reporting in a coordinated multipoint (CoMP) scenario is disclosed. One method can include a user equipment (UE) generating a plurality of CSI reports for transmission in a subframe for a plurality of CSI processes. Each CSI report can correspond to a CSI process with a CSIProcessIndex. The UE can drop CSI reports corresponding to CSI processes except a CSI process with a lowest CSIProcessIndex. The UE can transmit at least one CSI report for the CSI process to an evolved Node B (eNB).
Abstract:
The techniques introduced herein provide a framework for efficient communication to, and among, a local communication group (LCG). The LCG may be a peer-to-group communication or a network-to-group communication. The peer-to-group communication may be one way (e.g., one peer in the group may send communications to the rest of the users with little feedback) or two way (e.g., each member of the group may have the ability to share content with the remaining members of the group). According to the techniques introduced herein, local group communication may be anchored through an eNodeB of an LTE network, which may use a combination of multicast communications in the downlink and unicast communications in the uplink.
Abstract:
Embodiments of the present disclosure describe devices, methods, computer-readable media and systems configurations for configuration of downlink coordinated multi-point (CoMP) communications in a wireless communication network. A user equipment (UE) may receive channel state information (CSI) reference signal (RS) parameters, from an evolved Node B (eNB), for individual transmission points of a coordinated multi-point (CoMP) Measurement Set including a plurality of transmission points. The UE may generate CSI-RS feedback information for the individual transmission points of the CoMP Measurement Set, and may transmit the generated CSI-RS feedback information for one or more of the individual transmission points to the eNB. The UE may receive a transmission from the eNB updating the individual transmission points included in the CoMP Measurement Set.