Abstract:
Chemically reactive carbocyanine dyes incorporating an indolium ring moiety that is substituted at the 3-position by a reactive group or by a conjugated substance, and their uses, are described. Conjugation through this position results in spectral properties that are uniformly superior to those of conjugates of spectrally similar dyes wherein attachment is at a different position. The invention includes derivative compounds having one or more benzo nitrogens.
Abstract:
Cyanine dye compounds having a negatively charged substituent that are nucleic acid stains, particularly for fluorescent staining of DNA, including compounds having the formula wherein W forms one or two fused 5- or 6-membered aromatic rings, a has a value of 0 or 1, n has a value of 0, or 1, X is O, S, or Se, and D is a pyridinium, or quinolinium moiety, provided that the compound has at least one negatively charged substituent.
Abstract:
Cyanine dye compounds having a substituted methine moiety that are nucleic acid stains, particularly for fluorescent staining of RNA, including compounds having the formula where R1 is a C1-C6 alkyl, sulfoalkyl, carboxyalkyl or C1-C6 alkoxy; each R2 is independently selected from the group consisting of H, C1-C6 alkyl, C1-C6 alkoxy, fused benzo, trifluoromethyl, amino, sulfo, carboxy and halogen, that is optionally further substituted; at least one of R3, R4, and R5 is an alkyl, aryl, heteroaryl, cyclic, or heterocyclic moiety that is optionally substituted by alkyl, amino, aminoalkyl, carboxy, nitro, or halogen; and the remaining R3, R4 or R5 are hydrogen; X is S, O, or Se; and D is a substituted or unsubstituted pyridinium, quinolinium or benzazolium moiety.
Abstract:
Actinomysin-based near IR emitting compounds and methods of their use as nucleic acid stains are provided. The actinomysin-based near IR emitting compounds have the structure: wherein R is H or NH2; R1, R2, R3, and R4 are independently a moiety comprising 1-30 atoms selected from H, O, C, and N, wherein the atoms are in a linear, branched, or cyclic configuration; R3 and/or R4 comprise a quaternary nitrogen atom; and R5 is H, F, or Cl.
Abstract:
Chemically reactive carbocyanine dyes incorporating an indolium ring moiety that is substituted at the 3-position by a reactive group or by a conjugated substance, and their uses, are described. Conjugation through this position results in spectral properties that are uniformly superior to those of conjugates of spectrally similar dyes wherein attachment is at a different position. The invention includes derivative compounds having one or more benzo nitrogens.
Abstract:
Embodiments of the present invention provide methods and nucleic acid reporter molecules for the detection of nucleic acid in a sample. The nucleic acid reporter molecule comprises two unsymmetrical cyanine monomer moieties, which may be the same or different, that are covalently attached by a linker comprising at least one aromatic, heteroaromatic, cyclic or heterocyclic moiety comprising 3-20 non-hydrogen atoms selected from the group consisting of O, N, S, P and C. The linker may be rigid, relatively flexible or some degree thereof. The unsymmetrical cyanine monomer moieties comprise a substituted or unsubstituted benzazolium moiety and a substituted or unsubstituted pyridinium or quinolinium moiety that is connected by a methine bridge that is monomethine, trimethine or pentamethine. The linkers form the cyanine dimer compounds by attaching to the pyridinium or quinolinium moiety of the monomer moieties. The present nucleic acid reporter molecules find utility in forming a nucleic acid-reporter molecule complex and detecting the nucleic acid. In particular, present nucleic acid reporter molecules with a rigid linker and monomer moieties with a monomethine bridge find utility in detecting RNA in the presence of DNA.
Abstract:
In various embodiments, the present invention provides fluorescent dyes that are linked to another species through an adaptor moiety. In an exemplary embodiment, the dye is linked to a polyphosphate nucleic acid through an adaptor. An adaptor can be a component of a linker. These conjugates find use in single molecule DNA sequencing and other applications. In various embodiments, the dye moiety is a cyanine dye. Cyanine dyes that are highly charged, such as those including multiple sulfonate, alkylsulfonate, carboxylate and/or alkylcarboxylate moieties are examples of cyanine dyes of use in the compounds of the invention.
Abstract:
Disclosed are near IR emitting fluorescent compounds; methods of making and kits containing the described compounds; and their use in fluorescence-based detection of biological materials.
Abstract:
Embodiments of the present invention provide methods and nucleic acid reporter molecules for the detection of nucleic acid in a sample. The nucleic acid reporter molecule comprises two unsymmetrical cyanine monomer moieties, which may be the same or different, that are covalently attached by a linker comprising at least one aromatic, heteroaromatic, cyclic or heterocyclic moiety comprising 3-20 non-hydrogen atoms selected from the group consisting of O, N, S, P and C. The linker may be rigid, relatively flexible or some degree thereof. The unsymmetrical cyanine monomer moieties comprise a substituted or unsubstituted benzazolium moiety and a substituted or unsubstituted pyridinium or quinolinium moiety that is connected by a methine bridge that is monomethine, trimethine or pentamethine. The linkers form the cyanine dimer compounds by attaching to the pyridinium or quinolinium moiety of the monomer moieties. The present nucleic acid reporter molecules find utility in forming a nucleic acid-reporter molecule complex and detecting the nucleic acid. In particular, present nucleic acid reporter molecules with a rigid linker and monomer moieties with a monomethine bridge find utility in detecting RNA in the presence of DNA.
Abstract:
The present invention provides methods and non-fluorescent carbocyanine quencher compounds having the general formula: Wherein the A moiety is a substituted pyridinium, unsubstituted pyridinium, substituted quinolinium, unsubstituted quinolinium, substituted benzazolium, unsubstituted benzazolium, substituted indolinium, or substituted indolinium. The invention further provides luminescent donor molecule-quencher pairs and luminescent donor molecule-quencher-luminescent acceptor molecule conjugates wherein the quencher is a cyanine compound of the present invention. The energy transfer pairs are used to detect an analyte of interest in a sample.