摘要:
Various systems for measurement of a specimen are provided. One system includes an optical subsystem configured to perform measurements of a specimen using vacuum ultraviolet light and non-vacuum ultraviolet light. This system also includes a purging subsystem that is configured to maintain a purged environment around the optical subsystem during the measurements. Another system includes a cleaning subsystem configured to remove contaminants from a specimen prior to measurement. In one embodiment, the cleaning subsystem may be a laser-based cleaning subsystem that is configured to remove contaminants from a localized area on the specimen. The system also includes an optical subsystem that is configured to perform measurements of the specimen using vacuum ultraviolet light. The optical subsystem is disposed within a purged environment. In some embodiments, the system may include a differential purging subsystem that is configured to provide the purged environment for the optical subsystem.
摘要:
Various systems for measurement of a specimen are provided. One system includes a first optical subsystem, which is disposed within a purged environment. The purged environment may be provided by a differential purging subsystem. The first optical subsystem performs measurements using vacuum ultraviolet light. This system also includes a second optical subsystem, which is disposed within a non-purged environment. The second optical subsystem performs measurements using non-vacuum ultraviolet light. Another system includes two or more optical subsystems configured to perform measurements of a specimen using vacuum ultraviolet light. The system also includes a purging subsystem configured to maintain a purged environment around the two or more optical subsystems. The purging subsystem is also configured to maintain the same level of purging in both optical subsystems. Some systems also include a cleaning subsystem configured to remove contaminants from a portion of a specimen prior to measurements at vacuum ultraviolet wavelengths.
摘要:
Disclosed is a method of obtaining information in-situ regarding a film of a sample using an eddy probe during a process for removing the film. The eddy probe has at least one sensing coil. An AC voltage is applied to the sensing coil(s) of the eddy probe. One or more first signals are measured in the sensing coil(s) of the eddy probe when the sensing coil(s) are positioned proximate the film of the sample. One or more second signals are measured in the sensing coil(s) of the eddy probe when the sensing coil(s) are positioned proximate to a reference material having a fixed composition and/or distance from the sensing coil. The first signals are calibrated based on the second signals so that undesired gain and/or phase changes within the first signals are corrected. A property value of the film is determined based on the calibrated first signals. An apparatus for performing the above described method is also disclosed.
摘要:
A cell for a vacuum ultraviolet plasma light source, the cell having a closed sapphire tube containing at least one noble gas. Such a cell does not have a metal housing, metal-to-metal seals, or any other metal flanges or components, except for the electrodes (in some embodiments). In this manner, the cell is kept to a relatively small size, and exhibits a more uniform heating of the gas and cell than can be readily achieved with a hybridized metal/window cell design. These designs generally result in higher plasma temperatures (a brighter light source), shorter wavelength output, and lower optical noise due to fewer gas convection currents created between the hotter plasma regions and surrounding colder gases. These cells provide a greater amount of output with wavelengths in the vacuum ultraviolet range than do quartz or fused silica cells. These cells also produce continuous spectral emission well into the infrared range, making them a broadband light source.
摘要:
A method and apparatus for process control in a lithographic process are described. Metrology may be performed on a substrate either before or after performing a patterning process on the substrate. One or more correctables to the lithographic patterning process may be generated based on the metrology. The patterning process performed on the substrate (or a subsequent substrate) may be adjusted with the correctables.
摘要:
A spectroscopic instrument of the type providing an infrared light beam from an infrared light source along an infrared light path, where the infrared light beam includes a wide range of wavelengths of radiation within a target range of from about two microns to about three hundred microns, where the infrared light source includes a supercontinuum source having a CO2 pumping laser adapted to fire into a solid-core photonic crystal fiber formed at least in part of at least one of AlClxBr(1-x), NaCl, and ZnSe, which solid-core photonic crystal fiber produces the infrared light beam when excited by the pumping laser.
摘要翻译:这种类型的光谱仪器沿着红外光路提供来自红外光源的红外光束,其中红外光束包括在约2微米至约300微米的目标范围内的宽范围的辐射波长, 其中所述红外光源包括具有CO 2泵送激光器的超连续光源,所述激光源适于射入至少部分由AlCl x Br(1-x),NaCl和ZnSe中的至少一种形成的固体光子晶体光纤, 核心光子晶体光纤在被激光激发时产生红外光束。
摘要:
In a near-field heterodyne spectroscopy system, a near-field generation device receives the output of a pump beam source and is also made to vibrate or move at a frequency f to generate a modulated near-field beam having a near-field component. The outputs of the pump beam source and a probe beam source (optional) as well as the modulated near-field beam are directed to the same point on a sample. At least one of the outputs of the pump beam source and probe beam source is modulated at a frequency Ω. Thus, the reflected beam that results from the interaction with the region illuminated by the modulated near-field beam is modulated at frequencies Ω+f and Ω−f. Because the excitation is near-field, the electric field in the sample is evanescent and ensures a shallow probing depth as well as smaller lateral dimensions beyond diffraction limit.
摘要:
Various systems for measurement of a specimen are provided. One system includes a first optical subsystem, which is disposed within a purged environment. The purged environment may be provided by a differential purging subsystem. The first optical subsystem performs measurements using vacuum ultraviolet light. This system also includes a second optical subsystem, which is disposed within a non-purged environment. The second optical subsystem performs measurements using non-vacuum ultraviolet light. Another system includes two or more optical subsystems configured to perform measurements of a specimen using vacuum ultraviolet light. The system also includes a purging subsystem configured to maintain a purged environment around the two or more optical subsystems. The purging subsystem is also configured to maintain the same level of purging in both optical subsystems. Some systems also include a cleaning subsystem configured to remove contaminants from a portion of a specimen prior to measurements at vacuum ultraviolet wavelengths.
摘要:
A metrology recipe includes dynamic instructions that allow a metrology tool to perform a secondary metrology operation on a test wafer when previous measurement data indicates a process issue with that test wafer. The metrology recipe can instruct the metrology tool to perform an efficient default metrology operation on all test wafers, and perform a more in-depth secondary metrology operation on only those wafers that warrant additional scrutiny. In this manner, critical metrology data can be captured with a minimum of effect on metrology throughput. The metrology data used to determine whether or not the secondary metrology operation is to be performed can be generated from default metrology operations within the same tool, or can be generated by measurements taken by a completely different tool. Such “external” metrology data can be received via a communications network, either directly or from a server on the network for processing the metrology data.