摘要:
An MR read transducer having passive end regions separated by a central active region comprises an MR layer made from a material having a low uniaxial magnetic anisotropy. A soft magnetic bias layer is adjacent to but spaced from the MR layer in the central region only, and the soft magnetic bias layer is made from a material having a high uniaxial magnetic anisotropy. A longitudinal bias is produced directly in each of the end regions only, and the means for producing the longitudinal bias comprise a layer made from a material having a high uniaxial magnetic anisotropy. Control of the uniaxial anisotropy can be achieved by choosing materials of appropriate magnetostriction or intrinsic uniaxial anisotropy.
摘要:
A magnetoresistive (MR) read transducer having passive end regions separated by a central active region in which an MR layer is formed over substantially only the central active region and in which a magnetic bias layers is formed in each passive end region. Each of the magnetic bias layers includes a layer of ferromagnetic material and a layer of antiferromagnetic material overlaying and in contact with the ferromagnetic layer to provide an exchange-coupled magnetic bias field. Each of the magnetic bias layers form an abutting junction having magnetic and electrically continuity with the MR layer to produce a longitudinal magnetic bias field in the transducer.
摘要:
The present invention includes a plurality of thin film magnetic heads which are arranged in a linear array with a spacing D between adjacent heads. The pole pieces of the magnetic heads are positioned in a side by side relationship in contrast to the normal pancake type of magnetic head. The linear array is angled at a skew angle .theta. with respect to the direction of travel of the magnetic medium. The track pitch is then D sin .theta.. The track width is substantially equal to the thickness of the pole tips P1T and P2T of the magnetic heads. This thickness can be in the order of 3 .mu.m. With such a pole tip thickness the track pitch of each magnetic head in the linear array can be 3-4 .mu.m. A plurality of narrow data tracks can then be provided with minimum pitch by a corresponding number of magnetic heads. The write signals are simultaneously fed to the heads or the read signals are simultaneously fed to the heads. This allows high data rates to be processed. The invention also provides different azimuth between adjacent heads to minimize cross talk between the tracks caused by track misregistration. Additional magnetic heads can be employed for servo control as needed.
摘要:
A process for producing a planar thin film magnetic head wherein a sacrificial layer is introduced to provide control of the gap planarization procedure. Unbounded planar layers of lower pole-tip material and nonmagnetic gap material are first deposited and covered with a sacrificial layer that may be selectively removed by solvent. A critical layer island is then formed by etching the excess, thereby ensuring ideal planar characteristics at the edges of the critical gap layer. Following island formation, the entire assembly is covered with a nonmagnetic insulating layer and lapped or etched smooth. This planarization process is adjusted to end in the sacrificial layer. The remaining sacrificial layer material is then removed by solvent, a step that not only ensures the integrity of the underlying critical gap and pole layers but also creates the upper step needed for staggered pole-tip and conformal pole-tip head configurations.
摘要:
A simplified method is provided for making a thin film magnetic head pole tip structure which includes a sidegap G sandwiched between pole tips PT1 and PT2. The method includes depositing bottom and top seedlayers with an insulation layer sandwiched therebetween. The pole tip PT2 is frame plated on top of the top seedlayer with top and bottom film surfaces which are bounded in part by a pair of spaced-apart sidewalls. The second seedlayer and preferably a depth portion of the insulation layer are removed with the exception of width portions of these layers below the pole tip PT1. A gap insulation layer is deposited on a sidewall of the pole tip PT1 to form the sidegap. The insulation layer with the exception of a portion of an insulation layer below the pole tip PT1 is removed to expose a portion of the bottom seedlayer adjacent to the pole tip PT1 where the pole tip PT2 is to be formed. The pole tip PT2 is then frame plated on top of the exposed portion of the first seedlayer adjacent to the sidegap to complete the desired thin film magnetic head.
摘要:
An MRAM structure is disclosed in which the bottom electrode has an amorphous TaN capping layer to consistently provide smooth and dense growth for AFM, pinned, tunnel barrier, and free layers in an overlying MTJ. Unlike a conventional Ta capping layer, TaN is oxidation resistant and has high resistivity to avoid shunting of a sense current caused by redeposition of the capping layer on the sidewalls of the tunnel barrier layer. Alternatively, the α-TaN layer is the seed layer in the MTJ. Furthermore, the seed layer may be a composite layer comprised of a NiCr, NiFe, or NiFeCr layer on the α-TaN layer. An α-TaN capping layer or seed layer can also be used in a TMR read head. An MTJ formed on an α-TaN capping layer has a high MR ratio, high Vb, and a RA similar to results obtained from MTJs based on an optimized Ta capping layer.
摘要:
Methods are presented for fabricating an MTJ element having a precisely controlled spacing between its free layer and a bit line and, in addition, having a protective spacer layer formed abutting the lateral sides of the MTJ element to eliminate leakage currents between MTJ layers and the bit line. Each method forms a dielectric spacer layer on the lateral sides of the MTJ element and, depending on the method, includes an additional layer that protects the spacer layer during etching processes used to form a Cu damascene bit line. At various stages in the process, a dielectric layer is also formed to act as a CMP stop layer so that the capping layer on the MTJ element is not thinned by the CMP process that planarizes the surrounding insulation. Subsequent to planarization, the stop layer is removed by an anisotropic etch of such precision that the MTJ element capping layer is not thinned and serves to maintain an exact spacing between the bit line and the MTJ free layer.
摘要:
A hard bias structure for biasing a free layer in a MR element within a magnetic read head is comprised of a soft magnetic underlayer such as NiFe and a hard bias layer comprised of Co78.6Cr5.2Pt16.2 or Co65Cr15Pt20 that are rigidly exchange coupled to ensure a well aligned longitudinal biasing direction with minimal dispersions. The hard bias structure is formed on a BCC seed layer such as CrTi to improve lattice matching. The hard bias structure may be laminated in which each of the underlayers and hard bias layers has a thickness that is adjusted to optimize the total HC, Mrt, and S values. The present invention encompasses CIP and CPP spin values, MTJ devices, and multi-layer sensors. A larger process window for fabricating the hard bias structure is realized and lower asymmetry output and NBLW reject rates during a read operation are achieved.
摘要:
Disclosed is a method of making a SVGMR sensor element. In the first embodiment a buffer layer is formed between a seed layer and a ferromagnetic (FM) free layer, the buffer layer being composed of alpha-Fe2O3 having a crystal lattice constant that is close to the FM free layer's crystal constant and has the same crystal structure. The metal oxide buffer layer enhances the specular scattering. In the second embodiment, a high conductivity layer (HCL) is formed over the buffer layer to create a spin filter-SVGMR. The HCL layer enhances the GMR ratio of the spin filter SVGMR. The third embodiment include a pinned FM layer comprising a three layer structure of a lower AP layer, a space layer (e.g., Ru) and an upper AP layer.
摘要翻译:公开了一种制造SVGMR传感器元件的方法。 在第一实施例中,在种子层和不含铁磁性(FM)的层之间形成缓冲层,该缓冲层由α-Fe 2 O 3 3 N 3 晶格常数接近于FM自由层的晶体常数,具有相同的晶体结构。 金属氧化物缓冲层增强了镜面散射。 在第二实施例中,在缓冲层上形成高电导率层(HCL)以产生自旋滤波器-GVGMR。 HCL层增强了旋转过滤器SVGMR的GMR比。 第三实施例包括包括下AP层的三层结构,空间层(例如Ru)和上AP层的钉扎FM层。
摘要:
A method for forming top and bottom spin valve sensors and the sensors so formed, the sensors having a strongly coupled SyAP pinned layer and an ultra-thin antiferromagnetic pinning layer. The two strongly coupled ferromagnetic layers comprising the SyAP pinned layer in the top valve configuration are separated by a Ru spacer layer approximately 3 angstroms thick, while the two layers in the bottom spin valve configuration are separated by a Rh spacer layer approximately 5 angstroms thick. This allows the use of an ultra thin MnPt antiferromagnetic pinning layer of thickness between approximately 80 and approximately 150 angstroms. The sensor structure produced thereby is suitable for high density applications.