Abstract:
An audio device, in at least one embodiment, includes a device package and a plurality of microphones. The device package defines a component cavity and a plurality of vias including a first via and a second via. The vias comprise openings in the device package extending between the component cavity and an exterior. The microphones are located within the component cavity. The microphones are configured to generate electrical signals in accordance with acoustic pressure in the respective vias. A disclosed audio apparatus includes an apparatus housing and a speaker and one or more noise cancellation microphones within the frame. The speaker includes a speaker diaphragm configured to vibrate in accordance with an audio signal. The apparatus housing may define a speaker cavity configured to mechanically support the speaker diaphragm. In at least one embodiment, the audio apparatus includes a multi-microphone device including a first transducer corresponding to a first via and a second transducer corresponding to a second via. A first acoustical conduit may extend from a first end in proximity to the first via to a first exterior location and a second acoustical conduit may extend from a second end in proximity to the second via to a second exterior location.
Abstract:
In accordance with methods and systems of the present disclosure, a mobile device may include an enclosure adapted such that the enclosure is readily transported by a user of the mobile device, a speaker associated with the enclosure for generating sound, and a controller within the enclosure, communicatively coupled to the speaker. The controller may be configured to receive a signal from the speaker, the signal induced at least in part by sound incident on the speaker other than sound generated by the speaker and process the signal.
Abstract:
In accordance with embodiments of the present disclosure, a processing system may include a plurality of processing paths including a first processing path and a second processing path, a digital-to-analog stage output, and a controller. The first processing path may include a first digital-to-analog converter for converting the digital input signal into a first intermediate analog signal, the first digital-to-analog converter configured to operate in a high-power state and a low-power state. The second processing path may include a second digital-to-analog converter for converting a digital input signal into a second intermediate analog signal. The digital-to-analog stage output may be configured to generate an analog signal comprising a sum of the first intermediate analog signal and the second intermediate analog signal. The controller may be configured to operate the first digital-to-analog converter in the lower-power state when a magnitude of the digital input signal is below a threshold magnitude.
Abstract:
A signal path may operate in one of a plurality of gain modes such that for each gain mode, the product of a digital gain and an analog signal gain of the signal path associated with the particular gain mode are approximately equal to a fixed path gain. During each of one or more calibration phases, a calibration system may measure analog signals at a plurality of nodes of the first path portion, calculate an actual analog gain associated with the gain mode based on the analog signals measured at the plurality of nodes, calculate an error between the fixed path gain and a mathematical product of the actual analog gain associated with the gain mode and the digital gain associated with the gain mode, and modify at least one of the digital gain and the analog gain associated with the gain mode in conformity with the error.
Abstract:
Requirements placed on the first integrator of a filter in a continuous-time delta-feedback modulator may be reduced by using circuitry to reduce the speed of a signal provided to the first integrator of the modulator. The reduction in speed applied to the signal received at the first integrator may then be compensated with circuitry elsewhere in the modulator, such that the net effect of the slow down and speed up of signals does not affect the output of the modulator. The sigma-delta modulator may be implemented in converters, such as an analog-to-digital converter (ADC).
Abstract:
In accordance with methods and systems of the present disclosure, a mobile device may include an enclosure adapted such that the enclosure is readily transported by a user of the mobile device, a speaker associated with the enclosure for generating sound, and a controller within the enclosure, communicatively coupled to the speaker. The controller may be configured to receive a signal from the speaker, the signal induced at least in part by sound incident on the speaker other than sound generated by the speaker and process the signal.
Abstract:
An apparatus may include a scrambler element configured to receive an input signal and generate a scrambled thermometer code-like signal having a plurality of bits based on the input signal and having a plurality of possible quantization values. The scrambler element may generate at least one equivalent code of the scrambled thermometer code-like signal for each possible quantization value. For each of one or more of the possible quantization values, the scrambler element may be configured to generate a plurality of possible equivalent codes of the scrambled thermometer code-like signal. Responsive to the input signal indicating a change in quantization value of the scrambled thermometer code-like signal, the scrambler element may change the scrambled thermometer code-like signal by transitioning the smallest possible number of the plurality of bits of the scrambled thermometer code-like signal to change quantization value of the scrambled thermometer code-like signal in accordance with the input signal.
Abstract:
A charge pump power supply may comprise a plurality of capacitors and a switching circuit for switching the capacitors to provide a first voltage or a second voltage in accordance with the select input. The charge pump power supply may have a signal polarity input for indicating a polarity of an output audio signal. Switches for switching one or more capacitors providing a first polarity voltage in a then-current operating mode may be configured to switch at a greater frequency than switches for switching one or more capacitors providing a second polarity voltage responsive to the signal polarity input indicating a positive polarity of the output audio signal. Switches for switching one or more capacitors providing the first polarity voltage in a then-current operating mode are configured to switch at a lesser frequency than switches for switching one or more capacitors providing the second polarity voltage responsive to the signal polarity input indicating a negative polarity of the output audio signal.
Abstract:
In at least one embodiment, a lighting system receives an input signal, such as a supply voltage, that can be affected by a dimmer. The supply voltage can be affected by a dimmer when, for example, a dimmer phase cut (i.e. chopped) the supply voltage. A dimmer detection system of the lighting system determines if a dimmer is affecting the supply voltage. In at least one embodiment, the dimmer detection system also determines a type of the dimmer, such as detecting if the dimmer is a leading edge or trailing edge dimmer. In at least one embodiment, the dimmer detection system provides dimmer type data to one or more other circuits such as a switching power converter controller. The one or more other circuits utilize the dimmer type data to affect their operation.
Abstract:
A mobile device may include a digital data driver and digital data receiver for communication of digital signals within the mobile device at a selected clock rate. The mobile device may also have a device external for the digital data driver and digital data receiver for communication of external signals, such as radio-frequency signals, to and from the mobile device. To avoid interference of frequency harmonics of a digital signal with such external signals, the digital data driver may be configured to control the digital signal based on the frequency of the external signals, such that interference of the external signal by spectral content of the digital signal is minimized, while maintaining the selected clock rate.