摘要:
The current invention relates to the method and apparatus to magnetically separate biological entities with magnetic labels from a fluid sample. The claimed magnetic separation device removes biological entities with magnetic labels from its fluidic solution by using a soft-magnetic center pole with two soft-magnetic side poles. The claimed device further includes processes to dissociate entities conglomerate after magnetic separation.
摘要:
The current invention relates to the methods to achieve virtual reality with making virtual objects not under focus of a viewer in virtual scenes appear defocused, and making objects under focus of said viewer appearing focused and clear to said viewer. The current invention also relates to the methods to achieve augmented reality with making virtual objects in virtual scenes associated with real objects not under focus of a viewer in real scenes appear defocused to said viewer in said virtual scene, and making virtual objects in virtual scenes associated with real objects being under focus of a viewer in real scenes appear focused to said viewer in said virtual scene.
摘要:
The current invention relates to the method and apparatus to magnetically separate biological entities with magnetic labels from a fluid sample. The claimed magnetic separation device removes biological entities with magnetic labels from its fluidic solution by using a soft-magnetic center pole with two soft-magnetic side poles. The claimed device further includes processes to dissociate entities conglomerate after magnetic separation.
摘要:
The current invention relates to the method and apparatus to magnetically separate biological entities with magnetic labels from a fluid sample. The claimed methods separate biological entities with magnetic labels by using a magnetic device. The claimed methods further include processes to dissociate biological entities magnetic conglomerate after magnetic separation.
摘要:
The current invention relates to the device and method to separate biological entities from a sample fluid by a microfluidic device. The claimed methods separate biological entities by differentiating the sizes of the biological entities with ultrasound modes. The claimed methods further utilize a multi-staged design that removes smaller size entities at earlier and wider sections and concentrates larger entities at later and narrower sections of a microfluidic channel.
摘要:
The current invention relates to the method to achieve virtual reality or augmented reality with using flexible substrate containing light emitting arrays, or optical passage arrays, to project image upon the retinas of human eyes. Further, it relates to the method to detect the real-time focal length change of the eye-lens and modify the flexible substrate's curvature and distance from the eye to vary global angle configurations of light beams that go into the eye to produce images on the retina at various focus depth of the eyes to achieve re-focusable artificial vision.
摘要:
Methods to provide customized skin care by using specimen dispensing device to dispense specimens from removable dispensers for the purpose of treating skin of a user are presented. Methods to utilize the embedded memory and electrical interface of the dispensing device and dispensers to produce customizable skin care products that give better skin treatment results are also presented. The invention may also be applied to health care and personal care needs.
摘要:
Presented herein is a method and devices for identifying biological molecules and cells labeled by small magnetic particles and by optically active dyes. The labeled molecules are typically presented in a biological fluid but are then magnetically guided into narrow channels by a sequential process of magnetically trapping and releasing the magnetic labels that is implemented by sequential synchronized reversing the magnetic fields of a regular array of patterned magnetic devices that exert forces on the magnetic particles. These devices, which may be bonded to a substrate, can be formed as parallel magnetic strips adjacent to current carrying lines or can be substantially of identical structure to trilayered MTJ cells. Once the magnetically labeled molecules have been guided into the appropriate channels, their optical labels can be detected by a process of optical excitation and de-excitation. The molecules are thereby identified and counted.
摘要:
A spin transfer torque magnetic random access memory (STTMRAM) element and a method of manufacturing the same is disclosed having a free sub-layer structure with enhanced internal stiffness. A first free sub-layer is deposited, the first free sub-layer being made partially of boron (B), annealing is performed of the STTMRAM element at a first temperature after depositing the first free sub-layer to reduce the B content at an interface between the first free sub-layer and the barrier layer, the annealing causing a second free sub-layer to be formed on top of the first free sub-layer and being made partially of B, the amount of B of the second free sub-layer being greater than the amount of B in the first free sub-layer. Cooling down the STTMRAM element to a second temperature that is lower than the first temperature and depositing a third free sub-layer directly on top of the second free layer, with the third free sub-layer being made partially of boron (B), wherein the amount of B in the third sub-free layer is less than the amount of B in the second free sub-layer.
摘要:
Perpendicular magnetic anisotropy and Hc are enhanced in magnetic devices with a Ta/M1/M2 seed layer where M1 is preferably Ti, and M2 is preferably Cu, and including an overlying (Co/Ni)X multilayer (x is 5 to 50) that is deposited with ultra high Ar pressure of >100 sccm to minimize impinging energy that could damage (Co/Ni)X interfaces. In one embodiment, the seed layer is subjected to one or both of a low power plasma treatment and natural oxidation process to form a more uniform interface with the (Co/Ni)X multilayer. Furthermore, an oxygen surfactant layer may be formed at one or more interfaces between adjoining (Co/Ni)X layers in the multilayer stack. Annealing at temperatures between 180° C. and 400° C. also increases Hc but the upper limit depends on whether the magnetic device is MAMR, MRAM, a hard bias structure, or a perpendicular magnetic medium.