摘要:
A substrate is chemical mechanical polished with a high-selectivity slurry until the stop layer is at least partially exposed, and then the substrate is polished with a low-selectivity slurry until the stop layer is completely exposed.
摘要:
Method and apparatus for improving the reproducibility of chucking forces of an electrostatic chuck used in plasma enhanced CVD processing of substrates provides for precoating of the electrostatic chuck with a dielectric layer, such as SiO2, after every chamber cleaning process. The uniform and tightly bonded dielectric layer deposited on the electrostatic chuck eliminates the need for a cover wafer over the chuck surface during the chamber cleaning and provides for more reliable gripping of wafers.
摘要:
A polishing article for chemical mechanical polishing. The polishing article includes a generally elongated polishing sheet with a polishing surface. The polishing article is formed from a material that is substantially opaque, and has a discrete region extending substantially the length of the polishing sheet that is at least semi-transparent.
摘要:
The invention is embodied in a method of cleaning a plasma reactor by creating a vacuum in the chamber while introducing an etchant gas into the chamber through the gas injection ports, and applying RF energy to a ceiling electrode in the chamber while not necessarily applying RF energy to the coil antenna, so as to strike a predominantly capacitively coupled plasma in the vacuum chamber. In another embodiment the method includes, whenever the reactor is to be operated in an inductive coupling mode, applying RF power to the reactors coil antenna while grounding the ceiling electrode, and whenever the reactor is to be operated in a capacitive coupling mode, applying RF power to the ceiling electrode, and whenever the reactor is to be cleaned, cleaning the reactor by applying RF power to the ceiling electrode and to the coil antenna while introducing an etchant gas into the vacuum chamber. In yet another embodiment the method includes performing chemical vapor deposition on a wafer by introducing a deposition precursor gas into the chamber while maintaining an inductively coupled plasma therein by applying RF power to the coil antenna while grounding the ceiling electrode, and cleaning the reactor by introducing a precursor cleaning gas into the chamber while maintaining a capacitively coupled plasma in the chamber by applying RF power to the ceiling electrode.
摘要:
One or more aspects of this invention pertain to fabrication of electronic devices. One aspect of the present invention is a system for electroless deposition of metal on a substrate. According to one or more embodiments of the present invention, the system comprises a main subsystem in combination with one or more subsystems for electroless deposition on a substrate. Another aspect of the present invention is a method of making an electronic device. According to one or more embodiments of the present invention, the method comprises one or more processes. Descriptions according to one or more embodiments of the system and the processes are presented.
摘要:
Plasma immersion ion implantation employing a very high RF bias voltage on an electrostatic chuck to attain a requisite implant depth profile is carried out by first depositing a partially conductive silicon-containing seasoning layer over the interior chamber surfaces prior to wafer introduction.
摘要:
Methods and systems for handling a substrate through processes including an integrated electroless deposition process includes processing a surface of the substrate in an electroless deposition module to deposit a layer over conductive features of the substrate using a deposition fluid. The surface of the substrate is then rinsed in the electroless deposition module with a rinsing fluid. The rinsing is controlled to prevent de-wetting of the surface so that a transfer film defined from the rinsing fluid remains coated over the surface of the substrate. The substrate is removed from the electroless deposition module while maintaining the transfer film over the surface of the substrate. The transfer film over the surface of the substrate prevents drying of the surface of the substrate so that the removing is wet. The substrate, once removed from the electroless deposition module, is moved into a post-deposition module while maintaining the transfer film over the surface of the substrate.
摘要:
Embodiments of the invention generally provide methods for end point detection at predetermined dopant concentrations during plasma doping processes. In one embodiment, a method includes positioning a substrate within a process chamber, generating a plasma above the substrate and transmitting a light generated by the plasma through the substrate, wherein the light enters the topside and exits the backside of the substrate, and receiving the light by a sensor positioned below the substrate. The method further provides generating a signal proportional to the light received by the sensor, implanting the substrate with a dopant during a doping process, generating multiple light signals proportional to a decreasing amount of the light received by the sensor during the doping process, generating an end point signal proportional to the light received by the sensor once the substrate has a final dopant concentration, and ceasing the doping process.
摘要:
The present invention relates to methods and systems for the metallization of semiconductor devices. One aspect of the present invention is a method of depositing a copper layer onto a barrier layer so as to produce a substantially oxygen free interface therebetween. In one embodiment, the method includes providing a substantially oxide free surface of the barrier layer. The method also includes depositing an amount of atomic layer deposition (ALD) copper on the oxide free surface of the barrier layer effective to prevent oxidation of the barrier layer. The method further includes depositing a gapfill copper layer over the ALD copper. Another aspect of the present invention is a system for depositing a copper layer onto barrier layer so as to produce a substantially oxygen-free interface therebetween. In one embodiment, the integrated system includes at least one barrier deposition module. The system also includes an ALD copper deposition module configured to deposit copper by atomic layer deposition. The system further includes a copper gapfill module and at least one transfer module coupled to the at least one barrier deposition module and to the ALD copper deposition module. The transfer module is configured so that the substrate can be transferred between the modules substantially without exposure to an oxide-forming environment.
摘要:
A method is provided for performing plasma immersion ion implantation with a highly uniform seasoning film on the interior of a reactor chamber having a ceiling and a cylindrical side wall and a wafer support pedestal facing the ceiling. The method includes providing a gas distribution ring with plural gas injection orifices on a periphery of a wafer support pedestal, the orifices facing radially outwardly from the wafer support pedestal. Silicon-containing gas is introduced through the gas distribution orifices of the ring to establish a radially outward flow pattern of the silicon-containing gas. The reactor includes pairs of conduit ports in the ceiling adjacent the side wall at opposing sides thereof and respective external conduits generally spanning the diameter of the chamber and coupled to respective pairs of the ports. The method further includes injecting oxygen gas through the conduit ports into the chamber to establish an axially downward flow pattern of oxygen gas in the chamber. RF power is coupled into the interior of each of the conduits to generate a toroidal plasma current of SixOy species passing through the chamber to deposit a seasoning layer of a SixOy material on surfaces within the chamber, while leaving the pedestal without a wafer so as to expose a wafer support surface of the pedestal.
摘要翻译:提供了一种用于在具有天花板和圆柱形侧壁的反应室的内部以及面向天花板的晶片支撑台架上执行具有高度均匀的调味膜的等离子体浸没离子注入的方法。 该方法包括在晶片支撑基座的外围提供具有多个气体注入孔的气体分配环,所述孔从晶片支撑基座径向向外。 含硅气体通过环的气体分配孔引入,以建立含硅气体的径向向外流动图案。 反应器包括在天花板中的相邻侧壁处的相对侧的导管端口对,以及相应的外部导管,其通常跨越室的直径并且耦合到相应的端口对。 该方法还包括将氧气通过导管端口注入到腔室中,以在腔室中建立轴向向下的氧气气流模式。 RF功率耦合到每个导管的内部,以产生穿过室的Si O 2 O 3种类的环形等离子体电流,以沉积Si的调味层 同时在没有晶片的情况下离开基座,以便露出基座的晶片支撑表面,同时在腔室内的表面上形成一个或多个x O> O SUB>材料。