摘要:
A programmable impedance memory device structure can include a multi-layer variable impedance memory element formed on a planar surface of a first barrier layer, the multi-layer variable impedance memory element comprising a plurality of layers substantially parallel to the planar surface, including a memory material layer in contact with the planar surface, the first barrier layer being formed above a first insulating layer; and a second barrier layer formed over the memory element having a top surface substantially parallel with the planar surface. The first and second barrier layers can have lower mobility rates for at least one element within the memory material layer than the first insulating layer, and the memory material layer can be programmable by application of an electrical field between at least two different impedance states.
摘要:
A “Camera Calibrator” provides various techniques for recovering intrinsic camera parameters and distortion characteristics by processing a set of one or more input images. These techniques are based on extracting “Transform Invariant Low-Rank Textures” (TILT) from input images using high-dimensional convex optimization tools for matrix rank minimization and sparse signal recovery. The Camera Calibrator provides a simple, accurate, and flexible method to calibrate intrinsic parameters of a camera even with significant lens distortion, noise, errors, partial occlusions, illumination and viewpoint change, etc. Distortions caused by the camera can then be automatically corrected or removed from images. Calibration is achieved under a wide range of practical scenarios, including using multiple images of a known pattern, multiple images of an unknown pattern, single or multiple images of multiple patterns, etc. Significantly, calibration is achieved without extracting or manually identifying low-level features such as corners or edges from the calibration images.
摘要:
This application discloses distributed image processing methods and system with massive data flow. The image processing system can include three structures: from the top level to the lower level, a file server, a forwarding server and an image processing server. The servers are connected by Ethernet with hardware and socket interface of TCP/IP protocol. When processing a large amount of image data, many forwarding servers can be implemented for file processing in conjunction with one or more file servers. Image analysis servers and forwarding servers can be added to increase processing capacity. A high-level forwarding server can be added for receiving, formatting, transmitting, and distributing image data.
摘要:
Post-laser annealing dopant deactivation is minimized by performing certain silicide formation process steps prior to laser annealing. A base metal layer is deposited on the source-drain regions and the gate electrode, followed by deposition of an overlying compression cap layer, to prevent metal agglomeration at the silicon melting temperature. Thereafter, a rapid thermal process is performed to heat the substrate sufficiently to form metal silicide contacts at the top surfaces of the source-drain regions and of the gate electrode. The method further includes removing the remainder of the metal-containing layer and then depositing an optical absorber layer over the substrate prior to laser annealing near the silicon melting temperature.
摘要:
Embodiments of the invention generally provide a method for forming a doped silicon-containing material on a substrate. In one embodiment, the method provides depositing a polycrystalline layer on a dielectric layer and implanting the polycrystalline layer with a dopant to form a doped polycrystalline layer having a dopant concentration within a range from about 1×1019 atoms/cm3 to about 1×1021 atoms/cm3, wherein the doped polycrystalline layer contains silicon or may contain germanium, carbon, or boron. The substrate may be heated to a temperature of about 800° C. or higher, such as about 1,000° C., during the rapid thermal anneal. Subsequently, the doped polycrystalline layer may be exposed to a laser anneal and heated to a temperature of about 1,000° C. or greater, such within a range from about 1,050° C. to about 1,400° C., for about 500 milliseconds or less, such as about 100 milliseconds or less.
摘要翻译:本发明的实施方案通常提供了在衬底上形成掺杂的含硅材料的方法。 在一个实施例中,该方法提供在电介质层上沉积多晶层并且用掺杂剂注入多晶层以形成掺杂浓度在约1×10 19原子/ cm 3至约1×10 21原子/ cm 3范围内的掺杂多晶层,其中 掺杂多晶层含有硅或可含有锗,碳或硼。 在快速热退火期间,衬底可以被加热到约800℃或更高,例如约1000℃的温度。 随后,掺杂多晶层可以暴露于激光退火并加热至约1000℃或更高的温度,例如在约1050℃至约1400℃的温度下,持续约500毫秒或更短 ,例如约100毫秒或更少。
摘要:
A method for forming a poly-crystalline silicon film on a substrate by positioning a substrate within a processing chamber, heating the processing chamber to a first temperature between about 640° C. and about 720° C., stabilizing a deposition pressure between about 200 Torr and about 350 Torr, introducing a silicon precursor into the processing chamber to deposit a silicon film comprising an amorphous or hemisphere grain film, and heating the processing chamber to a second temperature between about 700° C. and about 750 C.° to anneal the amorphous or hemisphere grain film into a poly-crystalline nano-crystalline grain film.
摘要:
In one embodiment, a method for forming a dielectric material is provided which includes exposing a substrate sequentially to a metal-containing precursor and an oxidizing gas to form metal oxide (e.g., HfOx) during an ALD process and subsequently exposing the substrate to an inert plasma process and a thermal annealing process. Generally, the metal oxide contains hafnium, tantalum, titanium, aluminum, zirconium, lanthanum or combinations thereof. In one example, the inert plasma process contains argon and is free of nitrogen, while the thermal annealing process contains oxygen. In another example, an ALD process to form a metal oxide includes exposing the substrate sequentially to a metal precursor and an oxidizing gas containing water vapor formed by a catalytic water vapor generator. In an alternative embodiment, a method for forming a dielectric material is provide which includes exposing a substrate to a deposition process to form a metal oxide layer and subsequently exposing the substrate to a nitridation plasma process and a thermal annealing process to form metal oxynitride (e.g., HfOxNy).
摘要翻译:在一个实施例中,提供了一种用于形成介电材料的方法,其包括在ALD过程期间将衬底依次暴露于含金属的前体和氧化气体以形成金属氧化物(例如,HfO x x x) 随后将衬底暴露于惰性等离子体工艺和热退火工艺中。 通常,金属氧化物含有铪,钽,钛,铝,锆,镧或其组合。 在一个实例中,惰性等离子体工艺包含氩并且不含氮,而热退火工艺含有氧。 在另一个实例中,形成金属氧化物的ALD工艺包括将基板顺序地暴露于金属前体和含有由催化水蒸汽发生器形成的水蒸汽的氧化气体。 在替代实施例中,提供了形成电介质材料的方法,其包括将衬底暴露于沉积工艺以形成金属氧化物层,并随后将衬底暴露于氮化等离子体工艺和热退火工艺以形成金属氮氧化物(例如 ,HfO x N N y)。
摘要:
A method for making an integrated circuit device includes forming source and drain regions in a semiconductor substrate and defining a channel region therebetween, forming a graded, grown, gate oxide layer adjacent the channel region, forming a nitride layer adjacent the gate oxide layer, and forming a gate electrode layer adjacent the nitride layer. The gate oxide layer may be formed by growing a first oxide portion by upwardly ramping the channel region to a first temperature lower than a glass transition temperature, and exposing the channel region to an oxidizing ambient at the first temperature and for a first time period. A second oxide portion may be grown between the first oxide portion and the channel region by exposing the channel region to an oxidizing ambient at a second temperature higher than the glass transition temperature for a second time period so that the second oxide portion has a thickness in a range of about 2% to about 75% of a total thickness of the gate oxide layer. Forming the nitride layer may include forming a non-stoichiometric nitride layer, and the nitride layer is preferably formed to have a thickness of less than about 15 Å. The nitride layer reduces penetration of a dopant, such as boron, into the gate oxide layer.
摘要:
A gate or capacitor insulator structure using a first grown oxide layer, a high-k dielectric material on the grown oxide layer, and a deposited oxide layer on the high-k dielectric material. The deposited oxide layer is preferably a densified deposited oxide layer. A conducting layer, such as a gate or capacitor plate, may overlay the densified oxide layer.
摘要:
A layered gate dielectric structure suppresses boron diffusion and provides a gate dielectric structure which is free of trap sites and pinholes, and which does not introduce mobility or drive current problems. The layered gate dielectric structure includes a film which is originally formed as a structurally deficient nitride film which is subsequently converted to either an oxynitride film or a stoichiometric nitride film.