摘要:
This invention includes a novel synthesis of a three-step process of growing, depositing and growing Si02 under low pressure, e.g., 0.2-10 Torr, to generate high quality, robust and reliable gate oxides for sub 0.5 micron technologies. The first layer, 1.0-3.0 nm is thermally grown for passivation of the Si-semiconductor surface. The second deposited layer 1.0-5.0 nm forms an interface with the first grown layer. During the third step of the synthesis densification of the deposited oxide layers occurs with a simultaneous removal of the interface traps at the interface and growth of a stress-modulated Si02 occurs at the Si/first grown layer interface in the presence of a stress-accommodating interface layer resulting in a planar and stress-reduced Si/SiO2 interface. The entire synthesis is done under low-pressure (e.g., 0.2-10 Torr) for slowing down the oxidation kinetics to achieve ultrathin sublayers and may be done in a single low-pressure furnace by clustering all three steps. For light nitrogen-incorporation (
摘要:
This invention includes a novel synthesis of a three-step process of growing, depositing and growing SiO.sub.2 under low pressure, e.g., 0.2-10 Torr, to generate high quality, robust and reliable gate oxides for sub 0.5 micron technologies. The first layer, 1.0-3.0 nm is thermally grown for passivation of the Si-semiconductor surface. The second deposited layer, which contains a substantial concentration of a hydrogen isotope, such as deuterium, forms an interface with the first grown layer. During the third step of the synthesis densification of the deposited oxide layers occurs with a simultaneous removal of the interface traps at the interface and growth of a stress-modulated SiO.sub.2 occurs at the Si/first grown layer interface in the presence of a stress-accommodating interface layer resulting in a planar and stress-reduced Si/SiO.sub.2 interface. The entire synthesis is done under low-pressure (e.g., 0.2-10 Torr) for slowing down the oxidation kinetics to achieve ultrathin sublayers and may be done in a single low-pressure furnace by clustering all three steps. For light nitrogen-incorporation (
摘要:
A method and structure providing N-profile engineering at the poly/gate oxide and gate oxide/Si interfaces of a layered polysilicon/amorphous silicon structure of a semiconductor device. NH3 annealing provides for the introduction of nitrogen to the interface, where the nitrogen suppresses Boron diffusion, improves gate oxide integrity, and reduces the sites available for trapping hot carriers which degrade device performance.
摘要:
This invention includes a novel synthesis of a three-step process of growing, depositing and growing SiO2 under low pressure, e.g., 0.2-10 Torr, to generate high quality, robust and reliable gate oxides for sub 0.5 micron technologies. The first layer, 1.0-3.0 nm is thermally grown for passivation of the Si-semiconductor surface. The second deposited layer, which contains a substantial concentration of a hydrogen isotope, such as deuterium, forms an interface with the first grown layer. During the third step of the synthesis densification of the deposited oxide layers occurs with a simultaneous removal of the interface traps at the interface and growth of a stress-modulated SiO2 occurs at the Si/first grown layer interface in the presence of a stress-accommodating interface layer resulting in a planar and stress-reduced Si/SiO2 interface. The entire synthesis is done under low-pressure (e.g., 0.2-10 Torr) for slowing down the oxidation kinetics to achieve ultrathin sublayers and may be done in a single low-pressure furnace by clustering all three steps.
摘要:
This invention includes a novel synthesis of a three-step process of growing, depositing and growing SiO.sub.2 under low pressure, e.g., 0.2-10 Torr, to generate high quality, robust and reliable gate oxides for sub 0.5 micron technologies. The first layer, 1.0-3.0 nm is thermally grown for passivation of the Si-semiconductor surface. The second deposited layer 1.0-5.0 nm forms an interface to with the first grown layer. During the third step of the synthesis densification of the deposited oxide layers occurs with a simultaneous removal of the interface traps at the interface and growth of a stress-modulated SiO.sub.2 occurs at the Si/first grown layer interface in the presence of a stress-accommodating interface layer resulting in a planar and stress-reduced Si/SiO.sub.2 interface. The entire synthesis is done under low-pressure (e.g., 0.2-10 Torr) for slowing down the oxidation kinetics to achieve ultrathin sublayers and may be done in a single low-pressure furnace by clustering all three steps. For light nitrogen-incorporation (
摘要:
A layered gate dielectric structure suppresses boron diffusion and provides a gate dielectric structure which is free of trap sites and pinholes, and which does not introduce mobility or drive current problems. The layered gate dielectric structure includes a film which is originally formed as a structurally deficient nitride film which is subsequently converted to either an oxynitride film or a stoichiometric nitride film.
摘要:
A process for forming a layered gate dielectric structure which suppresses boron diffusion and provides a gate dielectric structure which is resistant to charge trapping, pinhole-free, and which does not introduce mobility or drive current problems. The process for forming the layered gate dielectric structure includes plasma enhanced chemical vapor deposition of a structurally deficient nitride film and an annealing process which converts the originally deposited film to either an oxynitride film or a stoichiometric nitride film.
摘要:
A method for forming a gate dielectric for use in ultra-thin integrated circuit environments includes forming a nitride layer under conditions effective to introduce defects in the nitride layer. The nitride layer is formed so as to have a defect density which is sufficiently large to provide a low interfacial trap density, particularly after annealing, and thus eliminate the charge trap problems associated with traditional nitride layers. This nitride layer can be used in, for example, ON or ONO structures, which can themselves be employed as a gate dielectric. The ON and ONO structures are preferably formed under low temperature and low pressure conditions to more effectively control oxide and nitride formation. This allows for the formation of gate dielectrics that are less than 10 nm in thickness. Moreover, these ultra-thin dielectrics can be formed in a single furnace cluster.
摘要:
The present invention is directed to a system for, and method of, determining a non-contact, near-surface generation and recombination lifetimes and near surface doping of a semiconductor material. The system includes: (1) a radiation pulse source that biases a dielectric on top of the semiconductor material, (2) a voltage sensor to sense the surface voltage, and (3) a photon source to create carriers. For lifetime measurements both the excitation and measurement signals are time dependent and may be probed near the surface of the semiconductor to obtain various electrical properties. For high-field tunneling and leakage characteristics of a thin dielectric (
摘要:
A “Camera Calibrator” provides various techniques for recovering intrinsic camera parameters and distortion characteristics by processing a set of one or more input images. These techniques are based on extracting “Transform Invariant Low-Rank Textures” (TILT) from input images using high-dimensional convex optimization tools for matrix rank minimization and sparse signal recovery. The Camera Calibrator provides a simple, accurate, and flexible method to calibrate intrinsic parameters of a camera even with significant lens distortion, noise, errors, partial occlusions, illumination and viewpoint change, etc. Distortions caused by the camera can then be automatically corrected or removed from images. Calibration is achieved under a wide range of practical scenarios, including using multiple images of a known pattern, multiple images of an unknown pattern, single or multiple images of multiple patterns, etc. Significantly, calibration is achieved without extracting or manually identifying low-level features such as corners or edges from the calibration images.