摘要:
A magnetoresistive effect element of the present invention includes: a domain wall motion layer, a spacer layer and a reference layer. The domain wall motion layer is made of ferromagnetic material with perpendicular magnetic anisotropy. The spacer layer is formed on the domain wall motion layer and made of non-magnetic material. The reference layer is formed on the spacer layer and made of ferromagnetic material, magnetization of the reference layer being fixed. The domain wall motion layer includes at least one domain wall, and stores data corresponding to a position of the domain wall. An anisotropy magnetic field of the domain wall motion layer is larger than a value in which the domain wall motion layer can hold the perpendicular magnetic anisotropy, and smaller than an essential value of an anisotropy magnetic field of the ferromagnetic material of the domain wall motion layer.
摘要:
A magnetic memory according to the present invention has: a first underlayer; a second underlayer so formed on the first underlayer as to be in contact with the first underlayer; and a data storage layer so formed on the second underlayer as to be in contact with the second underlayer. The data storage layer is made of a ferromagnetic material having perpendicular magnetic anisotropy. A magnetization state of the data storage layer is changed by current driven domain wall motion.
摘要:
A magnetic random access memory according to the present invention is provided with: a magnetic recording layer including a magnetization free region having a reversible magnetization, wherein a write current is flown through the magnetic recording layer in an in-plane direction; a magnetization fixed layer having a fixed magnetization; a non-magnetic layer provided between the magnetization free region and the magnetization fixed layer; and a heat sink structure provided to be opposed to the magnetic recording layer and having a function of receiving and radiating heat generated in the magnetic recording layer. The magnetic random access memory thus-structured radiates heat generated in the magnetic recording layer by using the heat sink structure, suppressing the temperature increase caused by the write current flown in the in-plane direction.
摘要:
A magnetoresistive effect element of the present invention includes: a domain wall motion layer, a spacer layer and a reference layer. The domain wall motion layer is made of ferromagnetic material with perpendicular magnetic anisotropy. The spacer layer is formed on the domain wall motion layer and made of non-magnetic material. The reference layer is formed on the spacer layer and made of ferromagnetic material, magnetization of the reference layer being fixed. The domain wall motion layer includes at least one domain wall, and stores data corresponding to a position of the domain wall. An anisotropy magnetic field of the domain wall motion layer is larger than a value in which the domain wall motion layer can hold the perpendicular magnetic anisotropy, and smaller than an essential value of an anisotropy magnetic field of the ferromagnetic material of the domain wall motion layer.
摘要:
A magnetic memory element includes: a first magnetization free layer formed of a ferromagnetic material having perpendicular magnetic anisotropy; a second magnetization free layer provided near the first magnetization free layer and formed of a ferromagnetic material having in-plane magnetic anisotropy; a reference layer formed of a ferromagnetic material having in-plane magnetic anisotropy; and a non-magnetic layer provided between the second magnetization free layer and the reference layer. The first magnetization free layer includes: a first magnetization fixed region of which magnetization is fixed, a second magnetization fixed region of which magnetization is fixed, and a magnetization free region which is connected to the first magnetization fixed region and the second magnetization fixed region, and of which magnetization can be switched. The second magnetization free layer is included in the first magnetization free layer in a plane parallel to a substrate. The second magnetization free layer is provided in a first direction away from the magnetization free region in the plane.
摘要:
A magnetic memory cell is provided with a magnetization record layer and a magnetic tunnel junction section. The magnetization record layer is a ferromagnetic layer having a perpendicular magnetic anisotropy. The magnetic tunnel junction section is used to read data from the magnetization record layer. The magnetization record layer has a plurality of domain wall motion regions.
摘要:
A magnetic memory includes a magnetization recording layer, a first terminal, a second terminal, a magnetization pinned layer and a non-magnetic layer. The magnetization recording layer has a vertical magnetic anisotropy and includes a ferromagnetic layer. The first terminal is connected to one end of a first region in the magnetization recording layer. The second terminal is connected to the other end of the first region. The non-magnetic layer is arranged on the first region. The magnetization pinned layer is arranged on the non-magnetic layer and is located on the side opposite to the first region. The magnetization recording layer includes: a first extension portion located outside the first terminal in the magnetization recording layer; and a property changing structure that is arranged in the first extension portion and substantially changes a magnetization switching property of the magnetization recording layer.
摘要:
The present invention provides a new data writing method for an MRAM which can suppress deterioration of a tunnel barrier layer.A magnetic memory cell 1 has a magnetic recording layer 10 and a pinned layer 30 connected to the magnetic recording layer 10 through a non-magnetic layer 20. The magnetic recording layer 10 includes a magnetization switching region 13, a first magnetization fixed region 11 and a second magnetization fixed region 12. The magnetization switching region 13 has reversible magnetization and faces the pinned layer 30. The first magnetization fixed region 11 is connected to a first boundary B1 of the magnetization switching region 13 and its magnetization direction is fixed to a first direction. The second magnetization fixed region 12 is connected to a second boundary B2 of the magnetization switching region 13 and its magnetization direction is fixed to a second direction. Both of the first direction and the second direction are toward the magnetization switching region 13 or away from the magnetization switching region 13.
摘要:
A semiconductor device includes: a first magnetic random access memory including a first memory cell and a second magnetic random access memory including a second memory cell operating at higher speed than the first memory cell and is provided on the same chip together with the first magnetic random access memory. The first memory cell is a current-induced domain wall motion type MRAM and stores data based on a domain wall position of a magnetization free layer. A layer that a write current flows is different from a layer that a read current flows. The second memory cell is a current-induced magnetic field writing type MRAM and stores data based on a magnetic field induced by a write current.
摘要:
A magnetoresistance element includes an antiferromagnetic layer, a fixed ferromagnetic layer, a first nonmagnetic layer and a free ferromagnetic layer. The antiferromagnetic layer is formed on the upper surface side of a substrate. The fixed ferromagnetic layer is formed on the antiferromagnetic layer. The first nonmagnetic layer is formed on the fixed ferromagnetic layer. The free ferromagnetic layer is formed on the first nonmagnetic layer. The fixed ferromagnetic layer is provided with an amorphous layer. The amorphous layer contains amorphous material having a composition expressed by a chemical formula of X—Y—N. X is an element selected from Co, Fe and Ni. Y is an element selected from AI, Si, Mg, Ta, Nb, Zr, Hf, W, Mo, Ti and V. N represents nitrogen.