摘要:
In a nonvolatile semiconductor storage device having a split-gate memory cell including a control gate electrode and a sidewall memory gate electrode and a single-gate memory cell including a single memory gate electrode on the same silicon substrate, the control gate electrode is formed in a first region via a control gate insulating film, the sidewall memory gate electrode is formed in the first region via a charge trapping film, and at the same time, a single memory gate electrode is formed in a second region via the charge trapping film. At this time, the sidewall memory gate electrode and the single memory gate electrode are formed in the same process, and the control gate electrode and the sidewall memory gate electrode are formed so as to be adjacently disposed to each other in a state of being electrically isolated from each other.
摘要:
Provided is a semiconductor element having, while maintaining the same integratability as a conventional MOSFET, excellent switch characteristics compared with the MOSFET, that is, having the S-value less than 60 mV/order at room temperature. Combining the MOSFET and a tunnel bipolar transistor having a tunnel junction configures a semiconductor element that shows an abrupt change in the drain current with respect to a change in the gate voltage (an S-value of less than 60 mV/order) even at a low voltage.
摘要:
A gate dielectric functioning as a charge-trapping layer of a non-volatile memory cell with a structure of an insulator gate field effect transistor is formed by laminating a first insulator formed of a silicon oxide film, a second insulator formed of a silicon nitride film, a third insulator formed of a silicon nitride film containing oxygen, and a fourth insulator formed of a silicon oxide film in this order on a main surface of a semiconductor substrate. Holes are injected into the charge-trapping layer from a gate electrode side. Accordingly, since the operations can be achieved without the penetration of the holes through the interface in contact to the channel and the first insulator, the deterioration in rewriting endurance and the charge-trapping characteristics due to the deterioration of the first insulator does not occur, and highly efficient rewriting (writing and erasing) characteristics and stable charge-trapping characteristics can be achieved.
摘要:
The semiconductor device includes the nonvolatile memory cell in the main surface of a semiconductor substrate. The nonvolatile memory cell has a first insulating film over the semiconductor substrate, a conductive film, a second insulating film, the charge storage film capable of storing therein charges, a third insulating film over the charge storage film, a first gate electrode, a fourth insulating film in contact with the set of stacked films from the first insulating film to the foregoing first gate electrode, a fifth insulating film juxtaposed with the first insulating film over the foregoing semiconductor substrate, a second gate electrode formed over the fifth insulating film to be adjacent to the foregoing first gate electrode over the side surface of the fourth insulating film, and source/drain regions with the first and second gate electrodes interposed therebetween. The conductive film and the charge storage film are formed to two-dimensionally overlap.
摘要:
Provided is a nonvolatile semiconductor memory device highly integrated and highly reliable. A plurality of memory cells are formed in a plurality of active regions sectioned by a plurality of isolations (silicon oxide films) extending in the Y direction and deeper than a well (p type semiconductor region). In each memory cell, a contact is provided in the well (p type semiconductor region) so as to penetrate through a source diffusion layer (n+ type semiconductor region), and the contact that electrically connects bit lines (metal wirings) and the source diffusion layer (n+ type semiconductor region) is also electrically connected to the well (p type semiconductor region).
摘要:
A semiconductor device and manufacturing method of the same is provided in which the driving current of a pMOSFET is increased, through a scheme formed easily using an existing silicon process. A pMOSFET is formed with a channel in a direction on a (100) silicon substrate. A compressive stress is applied in a direction perpendicular to the channel by an STI.
摘要:
Provided is a nonvolatile semiconductor memory device highly integrated and highly reliable. A plurality of memory cells are formed in a plurality of active regions sectioned by a plurality of isolations (silicon oxide films) extending in the Y direction and deeper than a well (p type semiconductor region). In each memory cell, a contact is provided in the well (p type semiconductor region) so as to penetrate through a source diffusion layer (n+ type semiconductor region), and the contact that electrically connects bit lines (metal wirings) and the source diffusion layer (n+ type semiconductor region) is also electrically connected to the well (p type semiconductor region).
摘要:
A charge trapping layer in an element isolation region and that in an isolation region between a memory transistor and a selection transistor are removed so that the charges are not injected or trapped in the regions. Also, in an element isolation region, gate electrodes of each memory transistor are united at a position higher than a gate electrode of the selection transistor from a surface of a silicon substrate in an element isolation region, thereby reducing the capacitance between the memory transistor and the selection transistor.
摘要:
Capacity-gate voltage characteristics of a field-effect transistor having plural gates are measured against a voltage change in each one of the gates for an inverted MOSFET and for an accumulated MOSFET, respectively. These measurements together with numerical simulations provided from a model for quantum effects are used to determine flat band voltages between the plural gates and a channel. Next, an effective normal electric field is calculated as a vector line integral by using a set of flat band voltages for the measured capacity as a lower integration limit. Lastly, mobility depending on the effective normal electric field is calculated from current-gate voltage characteristic measurements and capacity measurements in a source-drain path, and the calculated mobility is substituted into an equation for a current-voltage curve between source and drain.
摘要:
A non-volatile semiconductor memory device is provided. A gate electrode configuring a memory cell is turned into floating state and a potential of a gate electrode adjacent thereto is changed, and reduce the potential of the gate electrode by this change of potential and the capacitive coupling. Furthermore, charge sharing is carried out by connecting two gate electrodes, and the voltage of the gate electrode is reduced by capacitive coupling with another gate electrode adjacent thereto, to largely reduce the potential of the gate electrode. Thereby, the voltage level generated by the charge pump circuit can be reduced. As a result, the size of the charge pump circuit can be reduced, or the circuit itself can be eliminated, resulting in reduction of the chip area.