摘要:
A method for easily and quickly evaluating the wavelength variability properties of a wavelength-variable semiconductor laser is provided. An inspection device includes a power source for supplying current to a wavelength-variable DBR semiconductor laser having an active region, a phase control region, and a DBR region, a photo-detector for detecting an output intensity of laser beam emitted from the wavelength-variable DBR semiconductor laser, and a transmission type wavelength-selection element that can be inserted into a light path from the wavelength-variable DBR semiconductor laser to the photo-detector. In a state where the transmission type wavelength-selection element is inserted into the light path from the wavelength-variable DBR semiconductor laser to the photo-detector, at least one of a phase current that is supplied to the phase control region and a DBR current that is supplied to the DBR region is changed with respect to a predetermined active current that is supplied to the active region, and the output intensity of the laser beam after the laser beam has passed through the transmission type wavelength-selection element is detected by the photo-detector.
摘要:
In a short-wavelength laser module, long-term reliability is lost because of unnecessary gas deposited on the end face of its optical waveguide. A short-wavelength laser module has a package structure wherein a package lid used when the short-wavelength laser module is hermetically sealed does not make contact with internal gas, and a process of accelerating the polymerization of a securing agent used inside the package is incorporated, whereby unnecessary gas from the securing agent is eliminated and the long-term reliability of the output is attained.
摘要:
In a short-wavelength laser module, long-term reliability is lost because of unnecessary gas deposited on the end face of its optical waveguide.A short-wavelength laser module has a package structure wherein a package lid used when the short-wavelength laser module is hermetically sealed does not make contact with internal gas, and a process of accelerating the polymerization of a securing agent used inside the package is incorporated, whereby unnecessary gas from the securing agent is eliminated and the long-term reliability of the output is attained.
摘要:
Laser beams respectively emitted from a SHG blue laser unit and a red semiconductor laser unit that have photo detectors respectively are turned into parallel lights by a collimator lens and then coupled by a dielectric multi-layer film mirror so as to be propagated on the same optical axis. The dielectric multi-layer film mirror is configured so as to transmit light with a wavelength of 500 nm or shorter and reflect light with a wavelength of 500 nm or longer for both P wave and S wave. The lights that are transmitted and reflected by the dielectric multi-layer film mirror pass through a polarizing hologram and a phase variable wave plate and are focused on an optical disk by an objective lens. In this manner, a simple configuration can realize a compatibility with many types of optical disks and a stable signal detection even when using a polarizing optical detection system.
摘要:
A semiconductor laser and an optical waveguide device with an optical waveguide formed at a surface of its substrate are provided on a submount. The semiconductor laser and the optical waveguide device are mounted with an active layer and a surface at which the optical waveguide is formed facing the submount, respectively. The submount is combined with the semiconductor laser or the optical waveguide device to form one body using an adhesive with a spacer, which maintains a substantially uniform distance therebetween, being interposed therebetween, so that position adjustment in the height direction can be made automatically and mounting can be carried out with high-precision optical coupling. Thus, an optical waveguide device integrated module and a method of manufacturing the same are provided, in which a semiconductor laser and a planar optical waveguide device are mounted with their positions in the height direction controlled with high precision.
摘要:
A method for producing Group-III-element nitride crystals by which an improved growth rate is obtained and large high-quality crystals can be grown in a short time, a producing apparatus used therein, and a semiconductor element obtained using the method and the apparatus are provided. The method is a method for producing Group-III-element nitride crystals that includes a crystal growth process of subjecting a material solution containing a Group III element, nitrogen, and at least one of alkali metal and alkaline-earth metal to pressurizing and heating under an atmosphere of a nitrogen-containing gas so that the nitrogen and the Group III element in the material solution react with each other to grow crystals. The method further includes, prior to the crystal growth process, a material preparation process of preparing the material solution in a manner that under an atmosphere of a nitrogen-containing gas, at least one of an ambient temperature and an ambient pressure is set so as to be higher than is set as a condition for the crystal growth process so that the nitrogen is allowed to dissolve in a melt containing the Group III element and the at least one of alkali metal and alkaline-earth metal. The method according to the present invention can be performed by using, for example, the producing apparatus shown in FIG. 7.
摘要:
A manufacturing method of a semiconductor element provided with a semiconductor layer containing a crystal of an organic semiconductor material of the invention includes the steps of (i) forming a frame (12) on a substrate (base) (11), and (ii) forming the semiconductor layer (crystal (13)) inside the frame (12). The step (ii) includes a crystal forming step in which a solution (21) containing the organic semiconductor material and a liquid medium is placed inside the frame (12) and then the crystal (13) is formed from the solution (21).
摘要:
A manufacturing apparatus of Group III nitride crystals and a method for manufacturing Group III nitride crystals are provided, by which high quality crystals can be manufactured. For instance, crystals are grown using the apparatus of the present invention as follows. A crystal raw material (131) and gas containing nitrogen are introduced into a reactor vessel (120), to which heat is applied by a heater (110), and crystals are grown in an atmosphere of pressure applied thereto. The gas is introduced from a gas supplying device (180) to the reactor vessel (120) through a gas inlet of the reactor vessel, and then is exhausted to the inside of a pressure-resistant vessel (102) through a gas outlet of the reactor vessel. Since the gas is introduced directly to the reactor vessel (120) without passing through the pressure-resistant vessel (102), the mixture of impurities attached to the pressure-resistant vessel (102) and the like into the site of the crystal growth can be prevented. Further, since the gas flows through the reactor vessel (120), there is no aggregation of an evaporating alkali metal, etc., at the gas inlet or the like, and such an alkali metal does not flow into the gas supplying device (180). As a result, the quality of Group III nitride crystals obtained can be improved.
摘要:
In a Group-III-element nitride semiconductor device including a Group-III-element nitride crystal layer stacked on a Group-III-element nitride crystal substrate, the substrate is produced by allowing nitrogen of nitrogen-containing gas and a Group III element to react with each other to crystallize in a melt (a flux) containing at least one of alkali metal and alkaline-earth metal, and a thin film layer is formed on the substrate and the thin film has a lower diffusion coefficient than that of the substrate with respect to impurities contained in the substrate. The present invention provides a semiconductor device in which alkali metal is prevented from diffusing.
摘要:
The present invention provides a method of manufacturing a Group III nitride substrate that has less variations in in-plane carrier concentration and includes crystals grown at a high growth rate. The manufacturing method of the present invention includes: (i) forming a semiconductor layer (a seed layer 12) on a substrate, with the semiconductor layer being formed of a semiconductor expressed by a composition formula of AluGavIn1−u−vN (wherein 0≦u≦1 and 0≦v≦1) and having a (0001) plane present at its surface; (ii) processing the surface of the semiconductor layer so that the surface becomes a plane sloped with respect to the (0001) plane of the semiconductor layer; and (iii) bringing the surface of the semiconductor layer into contact with a melt containing a solvent and at least one Group III element selected from gallium, aluminum, and indium, in an atmosphere containing nitrogen, to make the at least one Group III element and the nitrogen react with each other to grow Group III nitride crystals (GaN single crystals 13) on the semiconductor layer.
摘要翻译:本发明提供一种制造面内载流子浓度变化小的III族氮化物衬底的方法,包括以高生长速率生长的晶体。 本发明的制造方法包括:(i)在基板上形成半导体层(种子层12),半导体层由以下组成式表示的半导体形成:半导体层 (其中0 <= u <= 1且0 <= v <= 1),并且在其表面上存在(0001)面 ; (ii)处理半导体层的表面,使得该表面成为相对于半导体层的(0001)面倾斜的平面; 和(iii)在含氮气氛中使半导体层的表面与含有溶剂和至少一种选自镓,铝和铟的III族元素的熔体接触,以制备至少一种III族元素 并且氮彼此反应以在半导体层上生长III族氮化物晶体(GaN单晶13)。