Abstract:
A fluid connection device is provided for biological analysis apparatuses, intended to simultaneously connect a plurality of fluid conduits and at least one fluidic component including a connecting surface with a plurality of fluid ports, the device having: (i) a holding plate, (ii) removable attachment structure capable of pressing the holding plate against the connecting surface, (iii) connectors suitable for being fixed to the ends of the fluid conduits and provided with a seal suitable for allowing a sealed connection to be made between the connectors and the fluid ports, holding plate including through-openings opposite the fluid ports and being shaped in such a way as to be able to receive the connectors in through-openings and to hold them pressed against the connecting surface. A biological analysis apparatus implementing the device is also provided.
Abstract:
An ion-selective electrode comprising: a housing, which surrounds a housing interior; an ion-selective membrane; especially a polymer membrane; and a sensing system, which is in contact with the ion-selective membrane, for sensing a potential of the ion-selective membrane, wherein the ion-selective membrane at least partially fills the housing interior, and is in contact with a medium surrounding the housing via at least one traversing bore through a housing wall of the housing.
Abstract:
The invention is directed towards methods and compositions for identifying the amount of hydrofluoric acid in a buffered oxide etching composition. In buffered oxide etching compositions it is very difficult to measure the amount of hydrofluoric acid because it has varying equilibriums and it is toxic so it hard to handle and sample. When used to manufacture microchips however, incorrect amounts of hydrofluoric acid will ruin those chips. The invention utilizes a unique method of spectrographically measuring the hydrofluoric acid when in contact with added chromogenic agents to obtain exact measurements that are accurate, immediate, and safe.
Abstract:
The invention is directed towards methods and compositions for identifying the amount of hydrofluoric acid in a buffered oxide etching composition. In buffered oxide etching compositions it is very difficult to measure the amount of hydrofluoric acid because it has varying equilibriums and it is toxic so it hard to handle and sample. When used to manufacture microchips however, incorrect amounts of hydrofluoric acid will ruin those chips. The invention utilizes a unique method of spectrographically measuring the hydrofluoric acid when in contact with added chromogenic agents to obtain exact measurements that are accurate, immediate, and safe.
Abstract:
The present invention, provides a flow cytometry apparatus for the detection of particles from a plurality of samples comprising: means for moving a plurality of samples comprising particles from a plurality of respective source wells into a fluid flow stream; means for introducing a separation gas between each of the plurality of samples in the fluid flow stream; and means for selectively analyzing each of the plurality of samples for the particles. The present invention also provides a flow cytometry method employing such an apparatus.
Abstract:
A communication system capable of easily distinguishing a user includes means for storing reference living body information, means for reading collation living body information of the user, means for collating the collation living body information with the reference living body information and means for sending a notice of coincidence as data to a mating party when the collation result proves coincident.
Abstract:
A biosensor can include a fluid flow channel (12), a pulsing mechanism (14), and a binding response measurement mechanism (16). The fluid flow channel (12) can include an inlet (18) to accept a fluid into the fluid flow channel and an outlet (20). At least one binding sensor surface (22) can be oriented within the fluid flow channel. The binding sensor surface (22) can include a fixed binding moiety on the binding sensor surface selected to bind with a complimentary target agent within the fluid to form a complimentary bound duplex. The pulsing and flow switching mechanism (14) can be configured to drive the fluid into the fluid flow channel (12) in a pulsed analyte flow.
Abstract:
The invention is directed towards methods and compositions for identifying the amount of hydrofluoric acid in a buffered oxide etching composition. In buffered oxide etching compositions it is very difficult to measure the amount of hydrofluoric acid because it has varying equilibriums and it is toxic so it hard to handle and sample. When used to manufacture microchips however, incorrect amounts of hydrofluoric acid will ruin those chips. The invention utilizes a unique method of spectrographically measuring the hydrofluoric acid when in contact with added chromogenic agents to obtain exact measurements that are accurate, immediate, and safe.
Abstract:
The present invention relates to systems and methods for generating microdroplets with varying concentrations of a particular solute from a solution at fixed concentration.
Abstract:
A single injection gradient with a biosensor, both structural and methodological, achieves the binding of analyte to immobilized ligand over a wide concentration range without the necessity of regeneration of the sensing area. A gradient of concentrations adjacent to or within a flow cell facilitates kinetic analysis of interactions without requiring multiple discrete volumes or injections to achieve a range of concentrations. A continuous gradient fluid is preferably formed directly adjacent to the flow cell inlet or a region of sample/buffer dispersion at an injection point into a flow channel of a flow cell. The analyte gradient may be flowed through the flow cell from a low analyte concentration. Multiple component gradients are also provided.