Abstract:
A through-silicon-via structure formed within a semiconductor device is provided. The TSV structure may include a trench located within a substrate of the semiconductor device, an insulator layer located on at least one side wall of the trench, an electrically conductive layer located on the insulator layer, a first dielectric layer located on the electrically conductive layer, and a second dielectric layer located on the first dielectric layer and filling the trench. The second dielectric layer includes a higher refractive index relative to the first dielectric layer, such that the first and the second dielectric layer create an optical waveguide. The electrically conductive layer provides electrical coupling between the semiconductor device and another semiconductor device, while the optical waveguide provides optical coupling between the semiconductor device and the another semiconductor device, whereby the another semiconductor device has another substrate that is separate from the substrate of the semiconductor device.
Abstract:
An optical coupler integrated on a substrate, that will optically couple a laser and a waveguide and including an external element, including two arms separated by a notch, this notch being delimited laterally by two first walls at a spacing that reduces towards the bottom of the notch; a central element, located in the notch delimited laterally by two second walls and with a first region in which the two second walls are in direct contact with two first walls as far as the bottom of the notch; and an intermediate element, extending between the external element and the central element. The optical index of the central element is greater than the optical index of the intermediate element, itself greater than the optical index of the arms of the external element. Such an optical coupler provides efficient coupling between a laser emitting in the mid-infrared and a waveguide integrated on a substrate.
Abstract:
The present disclosure relates to an integrated chip having differential coupling elements that couple electromagnetic radiation having a frequency outside of the visible spectrum between a silicon substrate and a dielectric waveguide overlying the silicon substrate. In some embodiments, the integrated chip has a dielectric waveguide disposed within an inter-level dielectric (ILD) material overlying a semiconductor substrate. A differential driver circuit generates a differential signal having a first transmission signal component at a first output node and a complementary second transmission signal component at a second output node. A first transmission electrode located along a first side of the dielectric waveguide receives the first transmission signal component from the first output node, and a second transmission electrode located along a second side of the dielectric waveguide receives the complementary second transmission signal component from the second output node.
Abstract:
A SOI device may include a waveguide adapter that couples light between an external light source—e.g., a fiber optic cable or laser—and a silicon waveguide on the silicon surface layer of the SOI device. In one embodiment, the waveguide adapter is embedded into the insulator layer. Doing so may enable the waveguide adapter to be formed before the surface layer components are added onto the SOI device. Accordingly, fabrication techniques that use high-temperatures may be used without harming other components in the SOI device—e.g., the waveguide adapter is formed before heat-sensitive components are added to the silicon surface layer.
Abstract:
A system for use with optical and electrical signaling is disclosed. The system may include a printed circuit board (PCB) that includes a plurality of layers vertically stacked between a first face and a second face and a first optical signal transmission path within a first internal layer of the plurality of layers. The PCB may also include an electrical signal transmission path and a via extending through the plurality of layers. The via may include a first reflective surface that is configured to reflect light between the first optical signal transmission path and an opening of the via on the first face and an electrically conductive material that is configured to electrically connect the electrical signal transmission path to a portion of the via on the first face.
Abstract:
Disclosed are devices, systems, and methods for construction or fabrication of optical fiber-like devices by depositing curable optical materials of differing indices of refraction in a controlled manner forming integral optical pathways, the integral optical pathways exhibiting total internal reflection and functioning essentially equivalent optical properties to conventional optical fibers optical pathways.
Abstract:
A waveguide mode expander couples a smaller optical mode in a semiconductor waveguide to a larger optical mode in an optical fiber. The waveguide mode expander comprises a shoulder and a ridge. In some embodiments, the ridge of the waveguide mode expander has a plurality of stages, the plurality of stages having different widths at a given cross section.
Abstract:
A waveguide mode expander couples a smaller optical mode in a semiconductor waveguide to a larger optical mode in an optical fiber. The waveguide mode expander comprises a shoulder made of crystalline silicon and a ridge made of non-crystalline silicon (e.g., amorphous silicon). In some embodiments, the ridge of the waveguide mode expander has a plurality of stages, the plurality of stages have different widths and/or thicknesses at a given cross section.
Abstract:
A photonic integrated circuit includes optical circuitry fabricated over an underlying circuitry layer. The optical circuitry includes a dielectric material having recesses disposed within, layers of a light waveguide material deposited within the recesses, and lenses disposed over each layer of waveguide material. The underlying circuitry layer may include, for example, a semiconductor wafer as well as circuitry fabricated during front end of line (FEOL) semiconductor manufacturing such as, for example, sources, gates, drains, interconnects, contacts, resistors, and other circuitry that may be manufactured during FEOL processes. The underlying circuitry layer may also include circuitry manufactured during back end of line semiconductor manufacturing processes such as, for example, interconnect structures, metallization layers, and contacts.
Abstract:
An apparatus comprises a substrate comprising a silicon dioxide (SiO2) material disposed on top of the substrate, a silicon waveguide comprising a first adiabatic tapering and enclosed in the silicon dioxide material, and a low-index waveguide disposed on top of the substrate and adjacent to the first adiabatic tapering. A mode converter fabrication method comprises obtaining a mode converter comprising a substrate, a silicon waveguide disposed on the substrate and comprising a sidewall and a first adiabatic tapering, and a hard mask disposed on the silicon waveguide and comprising a silicon dioxide (SiO2) layer, wherein the hard mask does not cover the sidewall, and oxidizing the silicon waveguide and the hard mask, wherein oxidizing the silicon waveguide and the hard mask encloses the silicon waveguide within the silicon dioxide layer.