Abstract:
A stacked memory is disclosed including a first integrated circuit memory chip having first storage locations and stacked with a second integrated circuit memory chip. A redundant memory is shared by the first and second integrated circuit memory chips and has redundant storage locations that selectively replace corresponding storage locations in the first or second integrated circuit memory chips. The stacked memory also includes a pin interface for coupling to an external integrated circuit memory controller and respective first and second signal paths. The first signal path is formed through the first and second integrated circuit memory chips and is coupled to the redundant memory and to the pin interface. The second signal path is formed through the first and second integrated circuit memory chips and is coupled to the redundant memory and to the pin interface via the first signal path.
Abstract:
Described are memory apparatus organized in physical banks and including configurable data control circuit to support multiple data-width configurations. Relatively narrow width configurations load fewer sense amplifiers, resulting in reduced power usage for relatively narrow memory configurations. Also described are memory controllers that convey configuration value to configurable memory apparatus and support point-to-point data buffers for multiple width configurations.
Abstract:
A memory system includes a memory controller that writes data to and reads data from a memory device. A write data strobe accompanying the write data indicates to the memory device when the write data is valid, whereas a read strobe accompanying data from the memory device indicates to the memory controller when the read data is valid. The memory controller adaptively controls the phase of the write data strobe to compensate for timing drift at the memory device. The memory controller uses read signals as a measure of the drift.
Abstract:
In memory module populated by memory components having a write-timing calibration mode, control information that specifies a write operation is received via an address/control signal path and write data corresponding to the write operation is received via a data signal path. Each memory component receives multiple delayed versions of a timing signal used to indicate that the write data is valid, and outputs signals corresponding to the multiple delayed versions of the timing signal to enable determination, in a memory controller, of a delay interval between outputting the control information on the address/control signal path and outputting the write data on the data signal path.
Abstract:
A single-ended data transmission system transmits a signal having a signal voltage that is referenced to a power supply voltage and that swings above and below the power supply voltage. The power supply voltage is coupled to a power supply rail that also serves as a signal return path. The signal voltage is derived from two signal supply voltages generated by a pair of charge pumps that draw substantially same amount of current from a power supply.
Abstract:
A memory component has a signaling interface, data input/output (I/O) circuitry, command/address (CA) circuitry and clock generation circuitry. The signaling interface includes an on-die terminated data I/O and an unterminated CA input. The data I/O circuitry is dedicated to sampling write data bits at the data I/O timed by a strobe signal and to transmitting read data bits timed by a first clock signal, each of the write and read data bits being valid for a bit time at the data I/O. The CA circuitry samples CA signals at the CA input timed by a second clock signal, the CA signals indicating read and write operations to be performed within the memory component. The clock generation circuitry generates the first clock signal with a phase that establishes alignment between a leading edge of the bit time for each read data bit and a respective transition of the second clock signal.
Abstract:
A memory component includes a memory core comprising dynamic random access memory (DRAM) storage cells and a first circuit to receive external commands. The external commands include a read command that specifies transmitting data accessed from the memory core. The memory component also includes a second circuit to transmit data onto an external bus in response to a read command and pattern register circuitry operable during calibration to provide at least a first data pattern and a second data pattern. During the calibration, a selected one of the first data pattern and the second data pattern is transmitted by the second circuit onto the external bus in response to a read command received during the calibration. Further, at least one of the first and second data patterns is written to the pattern register circuitry in response to a write command received during the calibration.
Abstract:
A memory device includes a stack of circuit layers, each circuit layer having formed thereon a memory circuit configured to store data and a redundant resources circuit configured to provide redundant circuitry to correct defective circuitry on at least one memory circuit formed on at least one layer in the stack. The redundant resources circuit includes a partial bank of redundant memory cells, wherein an aggregation of the partial bank of redundant memory cells in each of the circuit layers of the stack includes at least one full bank of redundant memory cells and wherein the redundant resources circuit is configured to replace at least one defective bank of memory cells formed on any of the circuit layers in the stack with at least a portion of the partial bank of redundant memory cells formed on any of the circuit layers in the stack.
Abstract:
A memory component has a signaling interface, data input/output (I/O) circuitry, command/address (CA) circuitry and clock generation circuitry. The signaling interface includes an on-die terminated data I/O and an unterminated CA input. The data I/O circuitry is dedicated to sampling write data bits at the data I/O timed by a strobe signal and to transmitting read data bits timed by a first clock signal, each of the write and read data bits being valid for a bit time at the data I/O. The CA circuitry samples CA signals at the CA input timed by a second clock signal, the CA signals indicating read and write operations to be performed within the memory component. The clock generation circuitry generates the first clock signal with a phase that establishes alignment between a leading edge of the bit time for each read data bit and a respective transition of the second clock signal.
Abstract:
A three-dimensional integrated circuit (3D-IC) includes a stack of semiconductor wafers, each of which includes a substrate and a device layer. Programmable components, such as memory arrays or logic circuits, are formed within the device layers. Some of the programmable components are redundant, and can be substituted for defective components by programming passive memory elements in a separate conductive layer provided for this purpose. The separate conductive layer is devoid of active devices, and is therefore relatively reliable and inexpensive.