Abstract:
A method of outputting temperature data in a semiconductor device and a temperature data output circuit are provided. A pulse signal is generated in response to a booting enable signal activated in response to a power-up signal and the generation is inactivated in response to a mode setting signal during a power-up operation. A comparison signal is generated in response to the pulse signal by comparing a reference voltage independent of temperature with a sense voltage that varies with temperature change. The temperature data is changed in response to the comparison signal. Thus, the temperature data output circuit can rapidly output the exact temperature of the semiconductor device measured during the power-up operation.
Abstract:
A semiconductor memory device and a method therefor for changing an access right to access a shared memory area according to an external command and a refresh mode is provided. In one embodiment, the semiconductor memory device includes a plurality of input/output ports for inputting command signals for first or second mode refresh operation, a memory array divided into a plurality of different memory areas including a shared memory area that is accessible via at least two of the plurality of input/output ports, and a grant control block for assigning an access right to access the shared memory area in response to an external command signal. The grant control block may also generate grant control signals for preferentially assigning the access right to access the shared memory area to the input/output port for inputting the command signals for the first mode refresh operation.
Abstract:
A semiconductor memory device and a self-refresh method in which the semiconductor memory device includes a plurality of input/output ports having respective independent operation, a period of self-refresh through one of the plurality of input/output ports being subordinate to a kind of operation through another input/output port. Whereby, a refresh characteristic in a multi-port semiconductor memory device including a dual-port semiconductor memory device may be improved.
Abstract:
A variety of pad arrangements are provided for semiconductor devices for reducing the likelihood of bonding failures, particularly those due to shorts, and/or for reducing the difference in length between bonding wires to decrease signal skew during operation of the semiconductor device and improve signal integrity.
Abstract:
An integrated circuit device such as an integrated circuit memory device, includes a first fuse group such as a first laser fuse group including a plurality of first laser fuses each having a first narrow end, a second opposite end which is wider and a bent central portion. Pitches of the first end of the plurality of first laser fuses are narrow and pitches of the second end are wide. The plurality of first laser fuses are adjacent one another. A second fuse group such as a second laser fuse group includes a plurality of second laser fuses each having a first wide end, a second opposite end which is narrower, and a bent central portion. Pitches of the first end of the plurality of second laser fuses are wide and pitches of the second end are narrow. The second plurality of laser fuses are adjacent one another. The first ends of the laser fuses in the first laser fuse group are adjacent the first ends of laser fuses in the second laser fuse group. The second ends of the laser fuses in the first laser fuse group are adjacent the second ends of the laser fuses in the second laser fuse group. The central portions of the outer laser fuses of the first and second laser fuse groups are not bent, but straight. Accordingly, when a specific laser fuse is blown, neighboring laser fuses need not be damaged, and the density of the laser fuse area may be increased.
Abstract:
A synchronous dynamic random access memory capable of accessing data in a memory cell array therein in synchronism with a system clock from an external system such as a central processing unit (CPU). The synchronous DRAM receives an external clock and includes a plurality of memory banks each including a plurality of memory cells and operable in either an active cycle or a precharge cycle, a circuit for receiving a row address strobe signal and latching a logic level of the row address strobe signal in response to the clock, an address input circuit for receiving an externally generated address selecting one of the memory banks, and a circuit for receiving the latched logic level and the address from the address input circuit and for outputting an activation signal to the memory bank selected by the address and an inactivation signals to unselected memory banks when the latched logic level is a first logic level, so that the selected memory bank responsive to the activation signal operates in the active cycle while the unselected memory banks responsive to the inactivation signals operate in the precharge cycle.
Abstract:
A synchronous dynamic random access memory capable of accessing data in a memory cell array therein in synchronism with a system clock from an external system such as a central processing unit (CPU). The synchronous DRAM receives an external clock and includes a plurality of memory banks each including a plurality of memory cells and operable in either an active cycle or a precharge cycle, a circuit for receiving a row address strobe signal and latching a logic level of the row address strobe signal in response to the clock, an address input circuit for receiving an externally generated address selecting one of the memory banks, and a circuit for receiving the latched logic level and the address from the address input circuit and for outputting an activation signal to the memory bank selected by the address and an inactivation signals to unselected memory banks when the latched logic level is a first logic level, so that the selected memory bank responsive to the activation signal operates in the active cycle while the unselected memory banks responsive to the inactivation signals operate in the precharge cycle.
Abstract:
There is provided a semiconductor memory device which does not require an additional input pad to apply a signal for discriminating between a normal cell and a redundant cell. The semicodnuctor memory device has (claim 1). Therefore, the normal cell array or the redundant cell array is sequentially selected and tested by using the same input pad to which the bank select bit is input, without an additional pad.
Abstract:
A synchronous dynamic random access memory capable of accessing data in a memory cell array therein in synchronism with a system clock from an external system such as a central processing unit (CPU). The synchronous DRAM receives an external clock and includes a plurality of memory banks each including a plurality of memory cells and operable in either an active cycle or a precharge cycle, a circuit for receiving a row address strobe signal and latching a logic level of the row address strobe signal in response to the clock, an address input circuit for receiving an externally generated address selecting one of the memory banks, and a circuit for receiving the latched logic level and the address from the address input circuit and for outputting an activation signal to the memory bank selected by the address and an inactivation signals to unselected memory banks when the latched logic level is a first logic level, so that the selected memory bank responsive to the activation signal operates in the active cycle while the unselected memory banks responsive to the inactivation signals operate in the precharge cycle.
Abstract:
A word line voltage boosting circuit varies a word line output voltage according to variation of the number of the word lines to be activated. A boosting circuit boosts a word line voltage which has been precharged to a first level voltage to a second level voltage in response to an activation signal. A voltage adding circuit further boosts the word line voltage to a third voltage level by adding a predetermined voltage to the second level voltage if the number of the word lines to be activated increases. A driving circuit includes a bootstrap circuit for stably providing the boosted word line voltage to an output line.