摘要:
Nanowire-based devices are provided. In one aspect, a field-effect transistor (FET) inverter is provided. The FET inverter includes a plurality of device layers oriented vertically in a stack, each device layer having a source region, a drain region and a plurality of nanowire channels connecting the source region and the drain region, wherein the source and drain regions of one or more of the device layers are doped with an n-type dopant and the source and drain regions of one or more other of the device layers are doped with a p-type dopant; a gate common to each of the device layers surrounding the nanowire channels; a first contact to the source regions of the one or more device layers doped with an n-type dopant; a second contact to the source regions of the one or more device layers doped with a p-type dopant; and a third contact common to the drain regions of each of the device layers. Techniques for fabricating a FET inverter are also provided.
摘要:
Methods, manufactures, machines and compositions are described for nanotransfer and nanoreplication using deterministically grown sacrificial nanotemplates. An apparatus, includes a substrate and a nanoreplicant structure coupled to a surface of the substrate.
摘要:
Systems and methods are described for controlled alignment of catalytically grown nanostructures in a large-scale synthesis process. A method includes: generating an electric field proximate an edge of a protruding section of an electrode, the electric field defining a vector; and forming an elongated nanostructure located at a position on a surface of a substrate, the position on the surface of the substrate proximate the edge of the protruding section of the electrode, at least one tangent to the elongated nanostructure i) substantially parallel to the vector defined by the electric field and ii) substantially non-parallel to a normal defined by the surface of the substrate.
摘要:
Nanowire-based devices are provided. In one aspect, a SRAM cell includes at least one pair of pass gates and at least one pair of inverters formed adjacent to one another on a wafer. Each pass gate includes one or more device layers each having a source region, a drain region and a plurality of nanowire channels connecting the source region and the drain region and a gate common to each of the pass gate device layers surrounding the nanowire channels. Each inverter includes a plurality of device layers each having a source region, a drain region and a plurality of nanowire channels connecting the source region and the drain region and a gate common to each of the inverter device layers surrounding the nanowire channels.
摘要:
A method for fabricating a thin-silicon-on-insulator transistor with borderless self-aligned contacts is disclosed. A gate stack is formed on a silicon layer that is above a buried oxide layer. The gate stack includes a gate oxide layer on the silicon layer and a gate electrode layer on the gate oxide layer. A hard mask on top of the gate stack is formed. An off-set spacer is formed surrounding the gate stack. A raised source/drain region is epitaxially formed adjacent to the off-set spacer. The raised source/drain region is grown slightly about a height of the gate stack including the hard mask. The raised source/drain region forms borderless self-aligned contact.
摘要:
A method for forming a patterned structure within a microelectronic structure uses a non-directly imageable organic material layer located over a substrate and a directly imageable inorganic material layer located upon the non-directly imageable organic material layer. The directly imageable inorganic material layer is directly imaged to form a patterned inorganic material layer. The patterned inorganic material layer is used as a first etch mask within a first etch method that etches the non-directly imageable organic material layer to form a patterned organic material layer. At least the patterned organic material layer is used as a second etch mask within a second etch method that etches the substrate to form a patterned structure within the substrate.
摘要:
Methods and apparatus are described for cantilever structures that include a vertically aligned nanostructure, especially vertically aligned carbon nanofiber scanning probe microscope tips. An apparatus includes a cantilever structure including a substrate including a cantilever body, that optionally includes a doped layer, and a vertically aligned nanostructure coupled to the cantilever body.
摘要:
Systems and methods are described for individually electrically addressable carbon nanofibers on insulating substrates. A method includes forming an electrically conductive interconnect on at least a part of an insulating surface on a substrate; and growing at least one fiber that is coupled to the electrically conductive interconnect.
摘要:
Systems and methods are described for individually electrically addressable carbon nanofibers on insulating substrates. An apparatus includes an electrically conductive interconnect formed on at least a part of an insulating surface on a substrate; and at least one vertically aligned carbon nanofiber coupled to the electrically conductive interconnect. A kit includes a substrate having an insulating surface; an electrically conductive interconnect formed on at least a part of the insulating surface; and at least one vertically aligned carbon nanofiber coupled to the electrically conductive interconnect.
摘要:
Techniques for minimizing or eliminating pattern deformation during lithographic pattern transfer to inorganic substrates are provided. In one aspect, a method for pattern transfer into an inorganic substrate is provided. The method includes the following steps. The inorganic substrate is provided. An organic planarizing layer is spin-coated on the inorganic substrate. The organic planarizing layer is baked. A hardmask is deposited onto the organic planarizing layer. A photoresist layer is spin-coated onto the hardmask. The photoresist layer is patterned. The hardmask is etched through the patterned photoresist layer using reactive ion etching (RIE). The organic planarizing layer is etched through the etched hardmask using RIE. A high-temperature anneal is performed in the absence of oxygen. The inorganic substrate is etched through the etched organic planarizing layer using reactive ion etching.