Abstract:
A transmission for transferring mechanical power between an input member and an output member is described, and includes a first synchronous electric machine including a first stator, a first distal rotor and a first proximal rotor and a second synchronous electric machine including a second stator, a second distal rotor and a second proximal rotor. The input member rotatably couples to the first distal rotor and to the second proximal rotor and the output member rotatably couples to the second distal rotor and to the first proximal rotor. Mechanical power is transferrable between the input member and the output member without torque being applied by the first stator.
Abstract:
A powertrain is disclosed. A ring gear is attached to a first distal end of a crankshaft such that the ring gear and the crankshaft are rotatable in unison about a longitudinal axis. A motor-generator includes a motor/generator shaft rotatable about a first axis spaced from the longitudinal axis. A starter mechanism includes a first starter gear coupleable to the motor/generator shaft and rotatable about a second axis spaced from the longitudinal axis. The first and second axes are spaced and substantially parallel to each other. The first starter gear is movable along the second axis between a first position engaging the ring gear such that torque is transferred from the motor/generator shaft through the first starter gear and the ring gear to the crankshaft to start the engine, and a second position disengaged from the ring gear to rotatably disconnect the starter mechanism from the ring gear.
Abstract:
A powertrain includes a motor-generator and an auxiliary electric system. The powertrain also includes a first energy storage device disposed in a parallel electrical relationship with a motor-generator and an auxiliary electric system. Additionally, the powertrain includes a first switching device selectively transitionable between a first open state to electrically disconnect the first energy storage device from at least one of the motor-generator and the auxiliary electric system, and a first closed state to electrically connect the first energy storage device to at least one of the motor-generator and the auxiliary electric system. The motor-generator and the auxiliary electric system are operable regardless of the first switching device being in the first open and closed states.
Abstract:
A method of controlling a power inverter coupled to an electric motor in a vehicle powertrain having an engine is provided. The method includes generating a voltage waveform signal and a switching frequency signal for the inverter via a controller. At least one of the voltage waveform signal and the switching frequency signal is at least partially based on at least one commanded engine operating parameter. For example, the engine on/off state, engine torque, and engine speed can be considered. A vehicle having a controller configured to implement the method is also provided.
Abstract:
A powertrain for a vehicle and a method of assembling the powertrain are disclosed. An engine includes a crankshaft being rotatable about a longitudinal axis. A ring gear is attached to a first distal end of the crankshaft such that the ring gear and the crankshaft are rotatable in unison about the longitudinal axis. A starter mechanism is selectively operable to rotate the ring gear and the crankshaft to start the engine. A motor-generator includes an adapter selectively cooperating with the starter mechanism to dispose the motor-generator and the starter mechanism in alternative assembly configurations being a first assembly configuration and a second assembly configuration. The first assembly configuration is when the starter mechanism is coupleable to the adapter and the second assembly configuration is when the starter mechanism is spaced from the adapter to operate independently of the motor-generator.
Abstract:
A powertrain is provided that has an engine with a rotatable crankshaft. The powertrain has a transmission with a transmission input member and a transmission output member. A final drive is operatively connected to the transmission output member and includes a drive axle. An engine clutch has an engaged state that operatively connects the engine crankshaft with the transmission input member, and has a disengaged state that operatively disconnects the engine crankshaft from the transmission input member. A motor/generator is provided and a first torque-transmitting device has a selectively engaged state in which the first torque-transmitting device transmits torque between the motor/generator and the transmission output member independent of the engine, the crankshaft, and the engine clutch. A second torque-transmitting device has a selectively engaged state in which the second torque-transmitting device transmits torque between the motor/generator and the crankshaft independent of the first torque-transmitting device and the engine clutch.
Abstract:
A hybrid powertrain with an engine, motor/generator, a belt drive train, a starting mechanism and one or more switching devices for one or more energy storage devices has at least one electronic controller that executes a stored algorithm and controls the hybrid powertrain in accordance with the stored algorithm to establish multiple operating modes including an operating mode in which a first switching device establishes an electrical connection between a first energy storage device and the motor/generator. The operating mode established can be dependent upon a parameter of the first energy storage device, a parameter of the control system, a parameter of the motor/generator, and/or a parameter of said at least one actuator. For example, the stored algorithm can control the hybrid powertrain based on a capacity to restart the engine.
Abstract:
A mechanical clutch such as a dog clutch includes a plurality of balls or rollers disposed in a carrier and positioned between opposed sets of straight cut teeth extending from opposed drive and driven elements. A ball or roller is positioned between each adjacent pair of teeth such that the torque load is transferred from the tooth on a first or drive element, through the ball or roller, to an adjacent projection or tooth on a second or driven element. The balls or rollers are maintained in position by the carrier having an inner ring and a concentric outer ring. Greatly reduced disengagement force, even under load, is exhibited by a clutch of this configuration.
Abstract:
A linear alternator assembly is provided that includes a block defining a cylinder. The cylinder block has inlet ports at which fluid enters the cylinder, exhaust ports at which fluid is exhausted from the cylinder, and a fuel port. Energizable coils surround the cylinder. A first and a second magnetic or magnetizable piston are contained within the cylinder and are positionable within the cylinder in response to energization of selective ones of the coils and combustion of fuel within the cylinder to selectively establish a four-stroke working cycle having an intake stroke, a compression stroke, an expansion stroke, and an exhaust stroke, producing at least one of compressed gas and electrical energy. The four-stroke working cycle may be varied to adapt to changes in power demanded, thereby balancing required output power with efficiency considerations.
Abstract:
A vehicle powertrain includes a first rotatable member and a second rotatable member. A clutch has an engaged state in which torque is transferred between the first rotatable member and the second rotatable member through the clutch. The clutch has a disengaged state in which torque is not transferred between the first rotatable member and the second rotatable member through the clutch. A clutch actuator includes a motor-generator that has a rotor rotatably drivable by one of the first rotatable member and the second rotatable member, and has a stator powerable to rotatably drive the rotor relative to said one of the first rotatable member and the second rotatable member. A controller is operatively connected to the stator and is configured to control the motor-generator to function as a generator to provide torque on the rotor. The motor-generator provides electrical power to a vehicle component.