Abstract:
Composite heat sink structures and methods of fabrication are provided, with the composite heat sink structures including: a thermally conductive base having a main heat transfer surface to couple to, for instance, at least one electronic component to be cooled; a compressible, continuous sealing member; and a sealing member retainer compressing the compressible, continuous sealing member against the thermally conductive base; and an in situ molded member. The in situ molded member is molded over and affixed to the thermally conductive base, and is molded over and secures in place the sealing member retainer. A coolant-carrying compartment resides between the thermally conductive base and the in situ molded member, and a coolant inlet and outlet are provided in fluid communication with the coolant-carrying compartment to facilitate liquid coolant flow through the compartment.
Abstract:
A cooled electronic system and cooling method are provided, wherein a field-replaceable bank of electronic components is cooled by an apparatus which includes an enclosure at least partially surrounding and forming a compartment about the electronic components, a fluid disposed within the compartment, and a heat sink associated with the enclosure. The field-replaceable bank extends, in part, through the enclosure to facilitate operative docking of the electronic components into one or more respective receiving sockets of the electronic system. The electronic components of the field-replaceable bank are, at least partially, immersed within the fluid to facilitate immersion-cooling of the components, and the heat sink facilitates rejection of heat from the fluid disposed within the compartment. In one embodiment, multiple thermal conductors project from an inner surface of the enclosure into the compartment to facilitate transfer of heat from the fluid to the heat sink.
Abstract:
A heat sink structure is provided having fins mechanically altered dynamically to change and optimize the heat sink's performance based on certain environmental conditions. Specifically, the shape of fins of the heat sink structure is dynamically altered in response to environmental conditions that indicate the need for increased thermal performance by spreading the fins through a mechanical device dynamically, or by collapsing the fins to reduce pressure drop across a region when increased thermal performance is not needed.
Abstract:
A cooling apparatus is provided, which includes: a thermal conductor to cool a heat-dissipating component(s) of an electronics enclosure, the enclosure including an air inlet side through which airflow ingresses. The thermal conductor includes a first conductor portion coupled to the heat-dissipating component(s), and a second conductor portion positioned along the enclosure's air inlet side. The apparatus further includes one or more air-cooled heat sinks coupled to the second conductor portion to facilitate transfer of heat from the second conductor portion to the airflow ingressing into the enclosure, and one or more thermoelectric devices coupled to at least one of the first or second conductor portions to selectively provide auxiliary cooling. A controller controls operation of the thermoelectric device(s) and selectively switches operation of the cooling apparatus between an active cooling mode, where the thermoelectric device(s) is active, and a passive cooling mode, where the thermoelectric device is inactive.
Abstract:
Cooling apparatuses and methods of fabricating thereof are provided which facilitate pumped immersion-cooling of an electronic component(s). The cooling apparatus includes an enclosure having a compartment accommodating the electronic component(s), and dielectric fluid within the compartment at least partially immersing the electronic component(s). A liquid-cooled heat sink is associated with the enclosure to cool at least one cooling surface associated with the compartment, and facilitate heat transfer to the heat sink from the electronic component(s) via the dielectric fluid. A pump is disposed external to the compartment and in fluid communication therewith to facilitate pumped dielectric fluid flow through the compartment. The pumped dielectric fluid flow through the compartment enhances heat transfer from the electronic component(s) to the liquid-cooled heat sink via the cooling surface(s). In one implementation, the pumped dielectric fluid flow provides two-phase cooling to the electronic component(s) via flow boiling.
Abstract:
Energy efficient control of a cooling system cooling an electronic system is provided based, in part, on projected conditions. The control includes automatically determining an adjusted control setting(s) for an adjustable cooling component(s) of the cooling system. The automatically determining is based, at least in part, on projected power consumed by the electronic system at a future time and projected temperature at the future time of a heat sink to which heat extracted is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on an experimentally obtained model(s) relating the targeted temperature and power consumption of the adjustable cooling component(s) of the cooling system.
Abstract:
Methods are presented for facilitating dissipation of heat generated by one or more electronic components. The methods include providing a coolant-cooled heat sink and a thermostat-controlled valve. The heat sink includes one or more coolant-carrying channels and one or more valve wells intersecting the channels. The thermostat-controlled valve is disposed, at least partially, within a respective valve well so as to intersect a respective coolant-carrying channel, and includes a valve disk and a thermal-sensitive actuator mechanically coupled to rotate the valve disk. The valve disk is rotatable between an open position where coolant is allowed to flow through the respective coolant-carrying channel, and a closed position where coolant is blocked from flowing through the respective channel. The actuator rotates the valve disk between the open position and the closed position, dependent on heating of the thermal-sensitive actuator by the electronic component(s).
Abstract:
Cooling apparatuses and methods of fabrication thereof are provided to facilitate two-phase, immersion-cooling of one or more electronic components. The cooling apparatus includes a housing having a compartment within which dielectric fluid is disposed which facilitates immersion-cooling of the electronic component(s). A liquid-cooled heat sink is associated with the housing and cools a cooling surface exposed within the compartment. One or more pumps are disposed within the compartment and configured to pump dielectric fluid liquid within the compartment towards the cooling surface to facilitate cooling the liquid within the compartment below a saturation temperature of the dielectric fluid. The heat sink includes or is coupled to condensing and sub-cooling regions exposed within the compartment.
Abstract:
Energy efficient control of cooling system cooling of an electronic system is provided based, in part, on weighted cooling effectiveness of the components. The control includes automatically determining speed control settings for multiple adjustable cooling components of the cooling system. The automatically determining is based, at least in part, on weighted cooling effectiveness of the components of the cooling system, and the determining operates to limit power consumption of at least the cooling system, while ensuring that a target temperature associated with at least one of the cooling system or the electronic system is within a desired range by provisioning, based on the weighted cooling effectiveness, a desired target temperature change among the multiple adjustable cooling components of the cooling system. The provisioning includes provisioning applied power to the multiple adjustable cooling components via, at least in part, the determined control settings.
Abstract:
Methods of facilitating cooling an electronic system are provided, which include: providing a heat sink(s) configured to cool an electronic component(s), the heat sink(s) including a coolant-carrying channel for a first coolant, the first coolant providing two-phase cooling to the electronic component(s) and being discharged from the heat sink(s) as coolant exhaust with coolant vapor; providing a node-level condensation module coupled in fluid communication with the heat sink(s), the condensation module receiving first coolant exhaust from the heat sink(s) and being liquid-cooled via a second coolant to condense coolant vapor before return to a rack-level return manifold; automatically controlling at least one of liquid-cooling of the heat sink(s), or liquid-cooling of the condensation module(s); and providing a control valve for adjusting flow rate of the second coolant to the condensation module(s), the control valve being automatically controlled based on a characterization of the coolant vapor in the coolant exhaust.